TU Darmstadt / ULB / TUbiblio

Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂ for Sodium Solid‐State Batteries

Ortmann, Till ; Burkhardt, Simon ; Eckhardt, Janis Kevin ; Fuchs, Till ; Ding, Ziming ; Sann, Joachim ; Rohnke, Marcus ; Ma, Qianli ; Tietz, Frank ; Fattakhova‐Rohlfing, Dina ; Kübel, Christian ; Guillon, Olivier ; Heiliger, Christian ; Janek, Jürgen (2023)
Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂ for Sodium Solid‐State Batteries.
In: Advanced Energy Materials, 2022, 13 (5)
doi: 10.26083/tuprints-00023679
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next‐generation batteries. In this respect, Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂ is a promising solid electrolyte for solid‐state sodium batteries, due to its high ionic conductivity and apparent stability versus sodium metal. The formation of a kinetically stable interphase in contact with sodium metal is revealed by time‐resolved impedance analysis, in situ X‐ray photoelectron spectroscopy, and transmission electron microscopy. Based on pressure‐ and temperature‐dependent impedance analyses, it is concluded that the Na|Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂interface kinetics is dominated by current constriction rather than by charge transfer. Cross‐sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time‐resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibration is faster and mainly caused by creep at increased external load. The presented information provides useful insights into a more profound evaluation of the sodium metal anode in solid‐state batteries.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Ortmann, Till ; Burkhardt, Simon ; Eckhardt, Janis Kevin ; Fuchs, Till ; Ding, Ziming ; Sann, Joachim ; Rohnke, Marcus ; Ma, Qianli ; Tietz, Frank ; Fattakhova‐Rohlfing, Dina ; Kübel, Christian ; Guillon, Olivier ; Heiliger, Christian ; Janek, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Kinetics and Pore Formation of the Sodium Metal Anode on NASICON‐Type Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂ for Sodium Solid‐State Batteries
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Energy Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 5
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00023679
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23679
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In recent years, many efforts have been made to introduce reversible alkali metal anodes using solid electrolytes in order to increase the energy density of next‐generation batteries. In this respect, Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂ is a promising solid electrolyte for solid‐state sodium batteries, due to its high ionic conductivity and apparent stability versus sodium metal. The formation of a kinetically stable interphase in contact with sodium metal is revealed by time‐resolved impedance analysis, in situ X‐ray photoelectron spectroscopy, and transmission electron microscopy. Based on pressure‐ and temperature‐dependent impedance analyses, it is concluded that the Na|Na₃.₄Zr₂Si₂.₄P₀.₆O₁₂interface kinetics is dominated by current constriction rather than by charge transfer. Cross‐sections of the interface after anodic dissolution at various mechanical loads visualize the formed pore structure due to the accumulation of vacancies near the interface. The temporal evolution of the pore morphology after anodic dissolution is monitored by time‐resolved impedance analysis. Equilibration of the interface is observed even under extremely low external mechanical load, which is attributed to fast vacancy diffusion in sodium metal, while equilibration is faster and mainly caused by creep at increased external load. The presented information provides useful insights into a more profound evaluation of the sodium metal anode in solid‐state batteries.

Freie Schlagworte: current constriction, impedance spectroscopy, interphase growth, NASICON electrolytes, SEI formation, sodium metal anodes
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236799
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > In-Situ Elektronenmikroskopie
Hinterlegungsdatum: 12 Mai 2023 08:57
Letzte Änderung: 15 Mai 2023 06:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen