Huang, Huiping ; Liu, Qi ; So, Hing Cheung ; Zoubir, Abdelhak M. (2023)
Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection.
In: IEEE Transactions on Aerospace and Electronic Systems, 59 (4)
doi: 10.1109/TAES.2023.3241886
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. We consider an array model within which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted regarding parameter selection, convergence speed, computational complexity, and performances of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the alternating direction method of multipliers in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Huang, Huiping ; Liu, Qi ; So, Hing Cheung ; Zoubir, Abdelhak M. |
Art des Eintrags: | Bibliographie |
Titel: | Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection |
Sprache: | Englisch |
Publikationsjahr: | August 2023 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Aerospace and Electronic Systems |
Jahrgang/Volume einer Zeitschrift: | 59 |
(Heft-)Nummer: | 4 |
DOI: | 10.1109/TAES.2023.3241886 |
Kurzbeschreibung (Abstract): | Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. We consider an array model within which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted regarding parameter selection, convergence speed, computational complexity, and performances of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the alternating direction method of multipliers in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung |
Hinterlegungsdatum: | 06 Jun 2023 08:43 |
Letzte Änderung: | 22 Jul 2024 13:26 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |