TU Darmstadt / ULB / TUbiblio

Getting the Residents' Attention: The Perception of Warning Channels in Smart Home Warning Systems

Haesler, Steffen ; Wendelborn, Marc ; Reuter, Christian (2023)
Getting the Residents' Attention: The Perception of Warning Channels in Smart Home Warning Systems.
2023 Designing Interactive Systems Conference. Pittsburgh, USA (10.07.2023-14.07.2023)
doi: 10.1145/3563657.3596076
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

About half a billion households are expected to use smart home systems by 2025. Although many IoT sensors, such as smoke detectors or security cameras, are available and governmental crisis warning systems are in place, little is known about how to warn appropriately in smart home environments. We created a Raspberry Pi based prototype with a speaker, a display, and a connected smart light bulb. Together with a focus group, we developed a taxonomy for warning messages in smart home environments, dividing them into five classes with different stimuli. We evaluated the taxonomy using the Experience Sampling Method (ESM) in a field study at participants' (N = 13) homes testing 331 warnings. The results show that taxonomy-based warning stimuli are perceived to be appropriate and participants could imagine using such a warning system. We propose a deeper integration of warning capabilities into smart home environments to enhance the safety of citizens.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Haesler, Steffen ; Wendelborn, Marc ; Reuter, Christian
Art des Eintrags: Bibliographie
Titel: Getting the Residents' Attention: The Perception of Warning Channels in Smart Home Warning Systems
Sprache: Englisch
Publikationsjahr: 10 Juli 2023
Verlag: ACM
Buchtitel: DIS'23: Proceedings of the 2023 ACM Designing Interactive Systems Conference
Veranstaltungstitel: 2023 Designing Interactive Systems Conference
Veranstaltungsort: Pittsburgh, USA
Veranstaltungsdatum: 10.07.2023-14.07.2023
DOI: 10.1145/3563657.3596076
Kurzbeschreibung (Abstract):

About half a billion households are expected to use smart home systems by 2025. Although many IoT sensors, such as smoke detectors or security cameras, are available and governmental crisis warning systems are in place, little is known about how to warn appropriately in smart home environments. We created a Raspberry Pi based prototype with a speaker, a display, and a connected smart light bulb. Together with a focus group, we developed a taxonomy for warning messages in smart home environments, dividing them into five classes with different stimuli. We evaluated the taxonomy using the Experience Sampling Method (ESM) in a field study at participants' (N = 13) homes testing 331 warnings. The results show that taxonomy-based warning stimuli are perceived to be appropriate and participants could imagine using such a warning system. We propose a deeper integration of warning capabilities into smart home environments to enhance the safety of citizens.

Freie Schlagworte: smart home warning system, public warning, crisis informatics, taxonomy, user perceptions, emergenCITY_INF, emergenCITY_SG, emergenCITY
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Wissenschaft und Technik für Frieden und Sicherheit (PEASEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Zentrale Einrichtungen
Zentrale Einrichtungen > Arbeitsgruppe Interdisziplinäre "Stadtforschung"
Hinterlegungsdatum: 26 Okt 2023 07:44
Letzte Änderung: 13 Mai 2024 17:00
PPN: 513018131
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen