Haesler, Steffen ; Wendelborn, Marc ; Reuter, Christian (2023)
Getting the Residents' Attention: The Perception of Warning Channels in Smart Home Warning Systems.
2023 Designing Interactive Systems Conference. Pittsburgh, USA (10.07.2023-14.07.2023)
doi: 10.1145/3563657.3596076
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
About half a billion households are expected to use smart home systems by 2025. Although many IoT sensors, such as smoke detectors or security cameras, are available and governmental crisis warning systems are in place, little is known about how to warn appropriately in smart home environments. We created a Raspberry Pi based prototype with a speaker, a display, and a connected smart light bulb. Together with a focus group, we developed a taxonomy for warning messages in smart home environments, dividing them into five classes with different stimuli. We evaluated the taxonomy using the Experience Sampling Method (ESM) in a field study at participants' (N = 13) homes testing 331 warnings. The results show that taxonomy-based warning stimuli are perceived to be appropriate and participants could imagine using such a warning system. We propose a deeper integration of warning capabilities into smart home environments to enhance the safety of citizens.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Haesler, Steffen ; Wendelborn, Marc ; Reuter, Christian |
Art des Eintrags: | Bibliographie |
Titel: | Getting the Residents' Attention: The Perception of Warning Channels in Smart Home Warning Systems |
Sprache: | Englisch |
Publikationsjahr: | 10 Juli 2023 |
Verlag: | ACM |
Buchtitel: | DIS'23: Proceedings of the 2023 ACM Designing Interactive Systems Conference |
Veranstaltungstitel: | 2023 Designing Interactive Systems Conference |
Veranstaltungsort: | Pittsburgh, USA |
Veranstaltungsdatum: | 10.07.2023-14.07.2023 |
DOI: | 10.1145/3563657.3596076 |
Kurzbeschreibung (Abstract): | About half a billion households are expected to use smart home systems by 2025. Although many IoT sensors, such as smoke detectors or security cameras, are available and governmental crisis warning systems are in place, little is known about how to warn appropriately in smart home environments. We created a Raspberry Pi based prototype with a speaker, a display, and a connected smart light bulb. Together with a focus group, we developed a taxonomy for warning messages in smart home environments, dividing them into five classes with different stimuli. We evaluated the taxonomy using the Experience Sampling Method (ESM) in a field study at participants' (N = 13) homes testing 331 warnings. The results show that taxonomy-based warning stimuli are perceived to be appropriate and participants could imagine using such a warning system. We propose a deeper integration of warning capabilities into smart home environments to enhance the safety of citizens. |
Freie Schlagworte: | smart home warning system, public warning, crisis informatics, taxonomy, user perceptions, emergenCITY_INF, emergenCITY_SG, emergenCITY |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Wissenschaft und Technik für Frieden und Sicherheit (PEASEC) LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY Zentrale Einrichtungen Zentrale Einrichtungen > Arbeitsgruppe Interdisziplinäre "Stadtforschung" |
Hinterlegungsdatum: | 26 Okt 2023 07:44 |
Letzte Änderung: | 13 Mai 2024 17:00 |
PPN: | 513018131 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |