TU Darmstadt / ULB / TUbiblio

Multiple Hypothesis Testing Framework for Spatial Signals

Gölz, Martin ; Zoubir, Abdelhak M. ; Koivunen, Visa (2022)
Multiple Hypothesis Testing Framework for Spatial Signals.
In: IEEE Transactions on Signal and Information Processing over Networks, 8
doi: 10.1109/TSIPN.2022.3190735
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gölz, Martin ; Zoubir, Abdelhak M. ; Koivunen, Visa
Art des Eintrags: Bibliographie
Titel: Multiple Hypothesis Testing Framework for Spatial Signals
Sprache: Englisch
Publikationsjahr: 14 Juli 2022
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Signal and Information Processing over Networks
Jahrgang/Volume einer Zeitschrift: 8
DOI: 10.1109/TSIPN.2022.3190735
Kurzbeschreibung (Abstract):

The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 08 Mai 2023 09:16
Letzte Änderung: 08 Mai 2023 09:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen