TU Darmstadt / ULB / TUbiblio

Regression-Based Inductive Reconstruction of Shell Auxetic Structures

Vivanco, Tomás ; Ojeda, Juan Eduardo ; Yuan, Philip
Hrsg.: Yuan, Philip F. ; Chai, Hua ; Yan, Chao ; Li, Keke ; Sun, Tongyue (2023)
Regression-Based Inductive Reconstruction of Shell Auxetic Structures.
In: Hybrid Intelligence. CDRF 2022. Computational Design and Robotic Fabrication.
doi: 10.1007/978-981-19-8637-6_42
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

This article presents the design process for generating a shell-like structure from an activated bent auxetic surface through an inductive process based on applying deep learning algorithms to predict a numeric value of geometrical features. The process developed under the Material Intelligence Workflow applied to the development of (1) a computational simulation of the mechanical and physical behaviour of an activated auxetic surface, (2) the generation of a geometrical dataset composed of six geometric features with 3,000 values each, (3) the construction and training of a regression Deep Neuronal Network (DNN) model, (4) the prediction of the geometric feature of the auxetic surface's pattern distance, and (5) the reconstruction of a new shell based on the predicted value. This process consistently reduces the computational power and simulation time to produce digital prototypes by integrating AI-based algorithms into material computation design processes.

Typ des Eintrags: Buchkapitel
Erschienen: 2023
Herausgeber: Yuan, Philip F. ; Chai, Hua ; Yan, Chao ; Li, Keke ; Sun, Tongyue
Autor(en): Vivanco, Tomás ; Ojeda, Juan Eduardo ; Yuan, Philip
Art des Eintrags: Bibliographie
Titel: Regression-Based Inductive Reconstruction of Shell Auxetic Structures
Sprache: Englisch
Publikationsjahr: 2023
Ort: Singapore
Verlag: Springer Nature Singapore
Buchtitel: Hybrid Intelligence. CDRF 2022. Computational Design and Robotic Fabrication.
DOI: 10.1007/978-981-19-8637-6_42
URL / URN: https://link.springer.com/chapter/10.1007/978-981-19-8637-6_...
Kurzbeschreibung (Abstract):

This article presents the design process for generating a shell-like structure from an activated bent auxetic surface through an inductive process based on applying deep learning algorithms to predict a numeric value of geometrical features. The process developed under the Material Intelligence Workflow applied to the development of (1) a computational simulation of the mechanical and physical behaviour of an activated auxetic surface, (2) the generation of a geometrical dataset composed of six geometric features with 3,000 values each, (3) the construction and training of a regression Deep Neuronal Network (DNN) model, (4) the prediction of the geometric feature of the auxetic surface's pattern distance, and (5) the reconstruction of a new shell based on the predicted value. This process consistently reduces the computational power and simulation time to produce digital prototypes by integrating AI-based algorithms into material computation design processes.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion > Fachgebiet Fassadentechnik
Hinterlegungsdatum: 03 Mai 2023 08:54
Letzte Änderung: 03 Mai 2023 08:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen