TU Darmstadt / ULB / TUbiblio

Semantic Segmentation with Small Training Datasets: A Case Study for Corrosion Detection on the Surface of Industrial Objects

Haitz, Dennis ; Hübner, Patrick ; Ulrich, Markus ; Landgraf, Steven ; Jutzi, Boris (2022)
Semantic Segmentation with Small Training Datasets: A Case Study for Corrosion Detection on the Surface of Industrial Objects.
Image Processing Forum 2022. Karlsruhe (24.11.2022-25.11.2022)
doi: 10.5445/IR/1000154095
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this research, we investigate possibilities to train convolutional neural networks with a small dataset for semantic segmentation, while achieving the best possible model generalization. In particular, we want to segment corrosion on the surface of industrial objects. In order to achieve model generalization, we utilize a selection of established and advanced strategies, i.e. Self-Supervised-Learning. Besides radiometric- and geometric-based data augmentation, we focus on model complexity regarding encoder and decoder, as well as optimal pretraining. Finally, we evaluate the best performing model against a pixel-wise random forest classification. As a result, we achieve an f1-score of 0.79 for the best performing model regarding the segmentation of corrosion.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Haitz, Dennis ; Hübner, Patrick ; Ulrich, Markus ; Landgraf, Steven ; Jutzi, Boris
Art des Eintrags: Bibliographie
Titel: Semantic Segmentation with Small Training Datasets: A Case Study for Corrosion Detection on the Surface of Industrial Objects
Sprache: Englisch
Publikationsjahr: 2022
Ort: Karlsruhe, Germany
Verlag: Karlsruher Institut für Technologie (KIT)
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Image Processing Forum
Buchtitel: Forum Bildverarbeitung 2022
Veranstaltungstitel: Image Processing Forum 2022
Veranstaltungsort: Karlsruhe
Veranstaltungsdatum: 24.11.2022-25.11.2022
DOI: 10.5445/IR/1000154095
Kurzbeschreibung (Abstract):

In this research, we investigate possibilities to train convolutional neural networks with a small dataset for semantic segmentation, while achieving the best possible model generalization. In particular, we want to segment corrosion on the surface of industrial objects. In order to achieve model generalization, we utilize a selection of established and advanced strategies, i.e. Self-Supervised-Learning. Besides radiometric- and geometric-based data augmentation, we focus on model complexity regarding encoder and decoder, as well as optimal pretraining. Finally, we evaluate the best performing model against a pixel-wise random forest classification. As a result, we achieve an f1-score of 0.79 for the best performing model regarding the segmentation of corrosion.

Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Fernerkundung und Bildanalyse
Hinterlegungsdatum: 27 Apr 2023 07:04
Letzte Änderung: 18 Okt 2024 11:51
PPN: 507907906
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen