TU Darmstadt / ULB / TUbiblio

Content-Aware Adaptive Point Cloud Delivery

Alkhalili, Yassin ; Gruczyk, Thomas ; Meuser, Tobias ; Anta, Antonio Fernández ; Khalil, Ahmad ; Mauthe, Andreas (2022)
Content-Aware Adaptive Point Cloud Delivery.
8th International Conference on Multimedia Big Data. Napoli, Italy (05.09.2022-07.09.2022)
doi: 10.1109/BigMM55396.2022.00010
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Point clouds are an important enabler for a wide range of applications in various domains, including autonomous vehicles and virtual reality applications. Hence, the practical applicability of point clouds is gaining increasing importance and presenting new challenges for communication systems where large amounts of data need to be shared with low latency. Point cloud content can be very large, especially when multiple objects are involved in the scene. Major challenges of point clouds delivery are related to streaming in bandwidth-constrained networks and to resource-constrained devices. In this work, we are exploiting object-related knowledge, i.e., content-driven metrics, to improve the adaptability and efficiency of point clouds transmission. This study proposes applying a 3D point cloud semantic segmentation deep neural network and using object related knowledge to assess the importance of each object in the scene. Using this information, we can semantically adapt the bit rate and utilize the available bandwidth more efficiently. The experimental results conducted on a real-world dataset showed that we can significantly reduce the requirement for multiple object point cloud transmission with limited quality degradation compared to the baseline without modifications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Alkhalili, Yassin ; Gruczyk, Thomas ; Meuser, Tobias ; Anta, Antonio Fernández ; Khalil, Ahmad ; Mauthe, Andreas
Art des Eintrags: Bibliographie
Titel: Content-Aware Adaptive Point Cloud Delivery
Sprache: Englisch
Publikationsjahr: 29 Dezember 2022
Verlag: IEEE
Buchtitel: 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM)
Veranstaltungstitel: 8th International Conference on Multimedia Big Data
Veranstaltungsort: Napoli, Italy
Veranstaltungsdatum: 05.09.2022-07.09.2022
DOI: 10.1109/BigMM55396.2022.00010
Kurzbeschreibung (Abstract):

Point clouds are an important enabler for a wide range of applications in various domains, including autonomous vehicles and virtual reality applications. Hence, the practical applicability of point clouds is gaining increasing importance and presenting new challenges for communication systems where large amounts of data need to be shared with low latency. Point cloud content can be very large, especially when multiple objects are involved in the scene. Major challenges of point clouds delivery are related to streaming in bandwidth-constrained networks and to resource-constrained devices. In this work, we are exploiting object-related knowledge, i.e., content-driven metrics, to improve the adaptability and efficiency of point clouds transmission. This study proposes applying a 3D point cloud semantic segmentation deep neural network and using object related knowledge to assess the importance of each object in the scene. Using this information, we can semantically adapt the bit rate and utilize the available bandwidth more efficiently. The experimental results conducted on a real-world dataset showed that we can significantly reduce the requirement for multiple object point cloud transmission with limited quality degradation compared to the baseline without modifications.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B1: Monitoring und Analyse
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C3: Inhaltszentrische Sicht
Hinterlegungsdatum: 04 Mai 2023 08:49
Letzte Änderung: 31 Jul 2023 11:40
PPN: 510039049
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen