TU Darmstadt / ULB / TUbiblio

Optimal design for compliance modeling of industrial robots with bayesian inference of stiffnesses

Tepper, Cornelia ; Matei, Alexander ; Zarges, Jonas ; Ulbrich, Stefan ; Weigold, Matthias (2023)
Optimal design for compliance modeling of industrial robots with bayesian inference of stiffnesses.
In: Production Engineering
doi: 10.1007/s11740-023-01198-3
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this paper a cost and time efficient approach to setup a compliance model for industrial robots is presented. The compliance model is distinctly determined by the gear's stiffness parameters which are tuned by an optimal design of experiments approach. The experimental setup consists of different poses of the robot's axes together with the applied force at the tool center point (TCP). These robot poses represent together with defined forces the experimental setup where the deviation of the robot under defined force is measured. Based on measurements of the displacement of the TCP the stiffness parameters for the compliance model are estimated and afterwards validated in new experiments. The efficiency of this approach lies in the reduced amount of experiments that are needed to identify the stiffness parameters that are parameters inherent to the compliance and the less complex experimental setup.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Tepper, Cornelia ; Matei, Alexander ; Zarges, Jonas ; Ulbrich, Stefan ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Optimal design for compliance modeling of industrial robots with bayesian inference of stiffnesses
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Production Engineering
DOI: 10.1007/s11740-023-01198-3
URL / URN: https://link.springer.com/article/10.1007/s11740-023-01198-3
Kurzbeschreibung (Abstract):

In this paper a cost and time efficient approach to setup a compliance model for industrial robots is presented. The compliance model is distinctly determined by the gear's stiffness parameters which are tuned by an optimal design of experiments approach. The experimental setup consists of different poses of the robot's axes together with the applied force at the tool center point (TCP). These robot poses represent together with defined forces the experimental setup where the deviation of the robot under defined force is measured. Based on measurements of the displacement of the TCP the stiffness parameters for the compliance model are estimated and afterwards validated in new experiments. The efficiency of this approach lies in the reduced amount of experiments that are needed to identify the stiffness parameters that are parameters inherent to the compliance and the less complex experimental setup.

Freie Schlagworte: robots, milling, optimal design of experiments, Bayesian inference, stiffness estimatio
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > TEC Fertigungstechnologie
Hinterlegungsdatum: 24 Apr 2023 05:28
Letzte Änderung: 24 Apr 2023 11:05
PPN: 507242688
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen