TU Darmstadt / ULB / TUbiblio

Theoretical study of thermodynamic and magnetic properties of transition metal carbide and nitride MAX phases

Malik, Ali Muhammad ; Rohrer, Jochen ; Albe, Karsten (2023)
Theoretical study of thermodynamic and magnetic properties of transition metal carbide and nitride MAX phases.
In: Physical Review Materials, 7 (4)
doi: 10.1103/PhysRevMaterials.7.044408
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We systematically perform density-functional theory (DFT) calculations for all possible Mn+1AXn (MAX) phases with transition metal M=Sc to Au (excluding Tc), A in group IIIA-IVA, X=C, N, and n=1,2,3, a total of about 1200 systems. The thermodynamic stability is determined by comparing the formation enthalpy (at 0 K) against all possible combinations of unary, binary, and ternary boundary phases (available from online DFT databases). Thereby, we identify 124 so far unknown phases (in terms of both experimental synthesis and other theoretical predictions), of which 54 are carbides and 70 are nitrides. Among all stable MAX phases, we identify nine with magnetic properties. In addition to already known and synthesized magnetic phases (Cr2AlC, Cr2GeC, Cr2GaN, and Mn2GaC), we predict five more MAX phases with magnetic ordering [Mn2A(=Ge, Sn)C, Cr3A(=Ga, Ge)N2, and Cr4A(=Ge)N3]. Evaluating previously suggested descriptors for the stability of MAX phases [valence electron concentrations (VECs), differences in atomic radius difference ΔRat, and differences in electronegativities Δχ], we find that ΔRat does not correlate with stability and stable phases are characterized by VEC<5.5, Δχ>1.5. The reverse is, however, not true; for example, a MAX phase with VEC<5.5 and Δχ>1.5 is not necessarily stable.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Malik, Ali Muhammad ; Rohrer, Jochen ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: Theoretical study of thermodynamic and magnetic properties of transition metal carbide and nitride MAX phases
Sprache: Englisch
Publikationsjahr: 17 April 2023
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Materials
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 4
Kollation: 10 Seiten
DOI: 10.1103/PhysRevMaterials.7.044408
Kurzbeschreibung (Abstract):

We systematically perform density-functional theory (DFT) calculations for all possible Mn+1AXn (MAX) phases with transition metal M=Sc to Au (excluding Tc), A in group IIIA-IVA, X=C, N, and n=1,2,3, a total of about 1200 systems. The thermodynamic stability is determined by comparing the formation enthalpy (at 0 K) against all possible combinations of unary, binary, and ternary boundary phases (available from online DFT databases). Thereby, we identify 124 so far unknown phases (in terms of both experimental synthesis and other theoretical predictions), of which 54 are carbides and 70 are nitrides. Among all stable MAX phases, we identify nine with magnetic properties. In addition to already known and synthesized magnetic phases (Cr2AlC, Cr2GeC, Cr2GaN, and Mn2GaC), we predict five more MAX phases with magnetic ordering [Mn2A(=Ge, Sn)C, Cr3A(=Ga, Ge)N2, and Cr4A(=Ge)N3]. Evaluating previously suggested descriptors for the stability of MAX phases [valence electron concentrations (VECs), differences in atomic radius difference ΔRat, and differences in electronegativities Δχ], we find that ΔRat does not correlate with stability and stable phases are characterized by VEC<5.5, Δχ>1.5. The reverse is, however, not true; for example, a MAX phase with VEC<5.5 and Δχ>1.5 is not necessarily stable.

Freie Schlagworte: CRC/TRR 270, Hysteresis design of magnetic materials for efficient energy conversion, HoMMage, Project No. 405553726
ID-Nummer: Artikel-ID: 044408
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Hinterlegungsdatum: 21 Apr 2023 05:23
Letzte Änderung: 06 Nov 2024 13:00
PPN: 507202872
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen