TU Darmstadt / ULB / TUbiblio

A Scenario-Based Model Comparison for Short-Term Day-Ahead Electricity Prices in Times of Economic and Political Tension

Baskan, Denis E. ; Meyer, Daniel ; Mieck, Sebastian ; Faubel, Leonhard ; Klöpper, Benjamin ; Strem, Nika ; Wagner, Johannes A. ; Koltermann, Jan J. (2023)
A Scenario-Based Model Comparison for Short-Term Day-Ahead Electricity Prices in Times of Economic and Political Tension.
In: Algorithms, 2023, 16 (4)
doi: 10.26083/tuprints-00023644
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In recent years, energy prices have become increasingly volatile, making it more challenging to predict them accurately. This uncertain market trend behavior makes it harder for market participants, e.g., power plant dispatchers, to make reliable decisions. Machine learning (ML) has recently emerged as a powerful artificial intelligence (AI) technique to get reliable predictions in particularly volatile and unforeseeable situations. This development makes ML models an attractive complement to other approaches that require more extensive human modeling effort and assumptions about market mechanisms. This study investigates the application of machine and deep learning approaches to predict day-ahead electricity prices for a 7-day horizon on the German spot market to give power plants enough time to ramp up or down. A qualitative and quantitative analysis is conducted, assessing model performance concerning the forecast horizon and their robustness depending on the selected hyperparameters. For evaluation purposes, three test scenarios with different characteristics are manually chosen. Various models are trained, optimized, and compared with each other using common performance metrics. This study shows that deep learning models outperform tree-based and statistical models despite or because of the volatile energy prices.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Baskan, Denis E. ; Meyer, Daniel ; Mieck, Sebastian ; Faubel, Leonhard ; Klöpper, Benjamin ; Strem, Nika ; Wagner, Johannes A. ; Koltermann, Jan J.
Art des Eintrags: Zweitveröffentlichung
Titel: A Scenario-Based Model Comparison for Short-Term Day-Ahead Electricity Prices in Times of Economic and Political Tension
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Algorithms
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 4
Kollation: 20 Seiten
DOI: 10.26083/tuprints-00023644
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23644
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In recent years, energy prices have become increasingly volatile, making it more challenging to predict them accurately. This uncertain market trend behavior makes it harder for market participants, e.g., power plant dispatchers, to make reliable decisions. Machine learning (ML) has recently emerged as a powerful artificial intelligence (AI) technique to get reliable predictions in particularly volatile and unforeseeable situations. This development makes ML models an attractive complement to other approaches that require more extensive human modeling effort and assumptions about market mechanisms. This study investigates the application of machine and deep learning approaches to predict day-ahead electricity prices for a 7-day horizon on the German spot market to give power plants enough time to ramp up or down. A qualitative and quantitative analysis is conducted, assessing model performance concerning the forecast horizon and their robustness depending on the selected hyperparameters. For evaluation purposes, three test scenarios with different characteristics are manually chosen. Various models are trained, optimized, and compared with each other using common performance metrics. This study shows that deep learning models outperform tree-based and statistical models despite or because of the volatile energy prices.

Freie Schlagworte: electricity price forecasting, machine learning, deep learning, German spot market, short-term, time series
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236445
Zusätzliche Informationen:

This article belongs to the Special Issue Algorithms and Optimization Models for Forecasting and Prediction

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Künstliche Intelligenz und Maschinelles Lernen
Hinterlegungsdatum: 11 Apr 2023 12:24
Letzte Änderung: 13 Apr 2023 14:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen