TU Darmstadt / ULB / TUbiblio

Active Learning of Continuous-time Bayesian Networks through Interventions

Linzner, Dominik ; Koeppl, Heinz (2023)
Active Learning of Continuous-time Bayesian Networks through Interventions.
Thirty-eighth International Conference on Machine Learning. virtual Conference (18.07.2021-24.07.2021)
doi: 10.26083/tuprints-00023308
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We consider the problem of learning structures and parameters of Continuous-time Bayesian Networks (CTBNs) from time-course data under minimal experimental resources. In practice, the cost of generating experimental data poses a bottleneck, especially in the natural and social sciences. A popular approach to overcome this is Bayesian optimal experimental design (BOED). However, BOED becomes infeasible in high-dimensional settings, as it involves integration over all possible experimental outcomes. We propose a novel criterion for experimental design based on a variational approximation of the expected information gain. We show that for CTBNs, a semi-analytical expression for this criterion can be calculated for structure and parameter learning. By doing so, we can replace sampling over experimental outcomes by solving the CTBNs master-equation, for which scalable approximations exist. This alleviates the computational burden of sampling possible experimental outcomes in high-dimensions. We employ this framework to recommend interventional sequences. In this context, we extend the CTBN model to conditional CTBNs to incorporate interventions. We demonstrate the performance of our criterion on synthetic and real-world data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Linzner, Dominik ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Active Learning of Continuous-time Bayesian Networks through Interventions
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: PMLR
Buchtitel: Proceedings of the 38th International Conference on Machine Learning
Reihe: Proceedings of Machine Learning Research
Band einer Reihe: 139
Veranstaltungstitel: Thirty-eighth International Conference on Machine Learning
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 18.07.2021-24.07.2021
DOI: 10.26083/tuprints-00023308
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23308
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We consider the problem of learning structures and parameters of Continuous-time Bayesian Networks (CTBNs) from time-course data under minimal experimental resources. In practice, the cost of generating experimental data poses a bottleneck, especially in the natural and social sciences. A popular approach to overcome this is Bayesian optimal experimental design (BOED). However, BOED becomes infeasible in high-dimensional settings, as it involves integration over all possible experimental outcomes. We propose a novel criterion for experimental design based on a variational approximation of the expected information gain. We show that for CTBNs, a semi-analytical expression for this criterion can be calculated for structure and parameter learning. By doing so, we can replace sampling over experimental outcomes by solving the CTBNs master-equation, for which scalable approximations exist. This alleviates the computational burden of sampling possible experimental outcomes in high-dimensions. We employ this framework to recommend interventional sequences. In this context, we extend the CTBN model to conditional CTBNs to incorporate interventions. We demonstrate the performance of our criterion on synthetic and real-world data.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-233085
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 31 Mär 2023 08:26
Letzte Änderung: 04 Apr 2023 13:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen