Schmidt, Immo ; Dingeldein, Lorenz ; Hünemohr, David ; Simon, Henrik ; Weigert, Max (2022)
Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line.
7th European Conference of the PHM Society 2022. Turin, Italy (06.07.2022-08.07.2022)
doi: 10.36001/phme.2022.v7i1.3372
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Schmidt, Immo ; Dingeldein, Lorenz ; Hünemohr, David ; Simon, Henrik ; Weigert, Max |
Art des Eintrags: | Bibliographie |
Titel: | Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line |
Sprache: | Englisch |
Publikationsjahr: | 29 Juni 2022 |
Ort: | Turin |
Verlag: | Prognostics and Health Management Society |
Buchtitel: | PHME 2022 - Proceedings of the 7th European Conference of the Prognostics and Health Management Society, Turin, Italy, July 6th - July 8th 2022 |
Veranstaltungstitel: | 7th European Conference of the PHM Society 2022 |
Veranstaltungsort: | Turin, Italy |
Veranstaltungsdatum: | 06.07.2022-08.07.2022 |
DOI: | 10.36001/phme.2022.v7i1.3372 |
Kurzbeschreibung (Abstract): | For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Flugsysteme und Regelungstechnik (FSR) |
Hinterlegungsdatum: | 23 Mär 2023 07:44 |
Letzte Änderung: | 23 Mär 2023 09:36 |
PPN: | 506244008 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |