TU Darmstadt / ULB / TUbiblio

Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line

Schmidt, Immo ; Dingeldein, Lorenz ; Hünemohr, David ; Simon, Henrik ; Weigert, Max (2022)
Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line.
7th European Conference of the PHM Society 2022. Turin, Italy (06.07.2022-08.07.2022)
doi: 10.36001/phme.2022.v7i1.3372
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Schmidt, Immo ; Dingeldein, Lorenz ; Hünemohr, David ; Simon, Henrik ; Weigert, Max
Art des Eintrags: Bibliographie
Titel: Application of Machine Learning Methods to Predict the Quality of Electric Circuit Boards of a Production Line
Sprache: Englisch
Publikationsjahr: 29 Juni 2022
Ort: Turin
Verlag: Prognostics and Health Management Society
Buchtitel: PHME 2022 - Proceedings of the 7th European Conference of the Prognostics and Health Management Society, Turin, Italy, July 6th - July 8th 2022
Veranstaltungstitel: 7th European Conference of the PHM Society 2022
Veranstaltungsort: Turin, Italy
Veranstaltungsdatum: 06.07.2022-08.07.2022
DOI: 10.36001/phme.2022.v7i1.3372
Kurzbeschreibung (Abstract):

For the data challenge of the 2022 European PHM conference, data from a production line of electric circuit boards is provided to assess the quality of the produced components. The solution presented in this paper was elaborated to fulfill the data challenge objectives of predicting defects found in an automatic inspection at the end of the production line, predicting the result of a following human inspection and predicting the result of the repair of the defect components. Machine learning methods are used to accomplish the different prediction tasks. In order to build a reliable machine learning model, the steps of data preparation, feature engineering and model selection are performed. Finally, different models are chosen and implemented for the different sub-tasks. The prediction of defects in the automatic inspection is modeled with a multi-layer perceptron neural network, the prediction of human inspection is modeled using a random forest algorithm. For the prediction of human repair, a decision tree is implemented.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Flugsysteme und Regelungstechnik (FSR)
Hinterlegungsdatum: 23 Mär 2023 07:44
Letzte Änderung: 23 Mär 2023 09:36
PPN: 506244008
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen