TU Darmstadt / ULB / TUbiblio

Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition

Huber, Marco ; Terhörst, Philipp ; Kirchbuchner, Florian ; Damer, Naser ; Kuijper, Arjan (2022)
Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition.
33rd British Machine Vision Conference 2022. London, United Kingdom (21.11.2022-24.11.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system’s decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Huber, Marco ; Terhörst, Philipp ; Kirchbuchner, Florian ; Damer, Naser ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition
Sprache: Englisch
Publikationsjahr: 25 November 2022
Verlag: BMVA Press
Buchtitel: BMVC 2022: 33rd British Machine Vision Conference Proceedings. Online resource
Veranstaltungstitel: 33rd British Machine Vision Conference 2022
Veranstaltungsort: London, United Kingdom
Veranstaltungsdatum: 21.11.2022-24.11.2022
URL / URN: https://bmvc2022.mpi-inf.mpg.de/506/
Kurzbeschreibung (Abstract):

Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system’s decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.

Freie Schlagworte: Biometrics, Face recognition, Deep learning, Machine learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 28 Mär 2023 12:58
Letzte Änderung: 28 Mär 2023 12:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen