TU Darmstadt / ULB / TUbiblio

Greenhouse Gases from Agriculture

Zaman, M. ; Kleineidam, K. ; Bakken, L. ; Berendt, J. ; Bracken, C. ; Butterbach-Bahl, K. ; Cai, Z. ; Chang, Z. X. ; Clough, T. ; Dawar, K. ; Ding, W. X. ; Dörsch, P. ; dos Reis Martins, M. ; Eckhardt, C. ; Fiedler, S. ; Frosch, T. (2021)
Greenhouse Gases from Agriculture.
In: Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
doi: 10.1007/978-3-030-55396-8_1
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean–atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.

Typ des Eintrags: Buchkapitel
Erschienen: 2021
Autor(en): Zaman, M. ; Kleineidam, K. ; Bakken, L. ; Berendt, J. ; Bracken, C. ; Butterbach-Bahl, K. ; Cai, Z. ; Chang, Z. X. ; Clough, T. ; Dawar, K. ; Ding, W. X. ; Dörsch, P. ; dos Reis Martins, M. ; Eckhardt, C. ; Fiedler, S. ; Frosch, T.
Art des Eintrags: Bibliographie
Titel: Greenhouse Gases from Agriculture
Sprache: Englisch
Publikationsjahr: 30 Januar 2021
Verlag: Springer
Buchtitel: Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
DOI: 10.1007/978-3-030-55396-8_1
Kurzbeschreibung (Abstract):

The rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean–atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.

Freie Schlagworte: Raman Gas Sensing, Fiber Enhanced Raman Spectroscopy FERS, Cavity Enhanced Raman Spectroscopy CERS, Nitrogen Cycle, Nitrogen N2, Methane, Carbon dioxide CO2
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Biophotonik-Medizintechnik
Hinterlegungsdatum: 19 Jan 2024 09:47
Letzte Änderung: 23 Apr 2024 09:28
PPN: 517378949
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen