Zhuo, Fangping ; Rödel, Jürgen (2023)
Fatigue-free dielectric and piezoelectric response in single-crystal BaTiO3 tuned by dislocation imprint.
In: Applied Physics Letters, 122
doi: 10.1063/5.0143331
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Dislocations have recently been imprinted into barium titanate single crystals to provide local domain wall pinning sites. Here, we assess the cycling stability under unipolar loading for the interaction between dislocations with [001] line vector and engineered ferroelectric domain walls. We find that a high large-signal piezoelectric strain coefficient (~2100 pm/V) and dielectric permittivity (20 800) can be obtained without degradation if the topological interaction between domain wall and dislocation line is well chosen to utilize transient and permanent pinning sites. Our findings demonstrate the potential of dislocation engineering for the manipulation of the mobility of domain walls in bulk ferroelectrics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Zhuo, Fangping ; Rödel, Jürgen |
Art des Eintrags: | Bibliographie |
Titel: | Fatigue-free dielectric and piezoelectric response in single-crystal BaTiO3 tuned by dislocation imprint |
Sprache: | Englisch |
Publikationsjahr: | 13 März 2023 |
Verlag: | AIP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Physics Letters |
Jahrgang/Volume einer Zeitschrift: | 122 |
DOI: | 10.1063/5.0143331 |
Kurzbeschreibung (Abstract): | Dislocations have recently been imprinted into barium titanate single crystals to provide local domain wall pinning sites. Here, we assess the cycling stability under unipolar loading for the interaction between dislocations with [001] line vector and engineered ferroelectric domain walls. We find that a high large-signal piezoelectric strain coefficient (~2100 pm/V) and dielectric permittivity (20 800) can be obtained without degradation if the topological interaction between domain wall and dislocation line is well chosen to utilize transient and permanent pinning sites. Our findings demonstrate the potential of dislocation engineering for the manipulation of the mobility of domain walls in bulk ferroelectrics. |
Zusätzliche Informationen: | Artikel-ID: 112901 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe |
Hinterlegungsdatum: | 14 Mär 2023 06:13 |
Letzte Änderung: | 14 Mär 2023 09:08 |
PPN: | 505871130 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |