TU Darmstadt / ULB / TUbiblio

Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning

Liu, Tianyi ; Tillmann, Andreas M. ; Yang, Yang ; Eldar, Yonina C. ; Pesavento, Marius (2022)
Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning.
In: IEEE Transactions on Signal Processing, 70
doi: 10.1109/TSP.2022.3233253
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Phase retrieval aims at recovering unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes another prior information that the signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and develop efficient parallel algorithms by extending the successive convex approximation framework using a smooth majorization. The first algorithm is termed compact-SCAphase and is preferable in the case of moderately diverse mixture models with a low number of mixing components. It adopts a compact formulation that avoids auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase , uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results show the efficiency of the proposed techniques compared to state-of-the-art methods.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Liu, Tianyi ; Tillmann, Andreas M. ; Yang, Yang ; Eldar, Yonina C. ; Pesavento, Marius
Art des Eintrags: Bibliographie
Titel: Extended Successive Convex Approximation for Phase Retrieval with Dictionary Learning
Sprache: Englisch
Publikationsjahr: 2022
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Signal Processing
Jahrgang/Volume einer Zeitschrift: 70
DOI: 10.1109/TSP.2022.3233253
Zugehörige Links:
Kurzbeschreibung (Abstract):

Phase retrieval aims at recovering unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes another prior information that the signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and develop efficient parallel algorithms by extending the successive convex approximation framework using a smooth majorization. The first algorithm is termed compact-SCAphase and is preferable in the case of moderately diverse mixture models with a low number of mixing components. It adopts a compact formulation that avoids auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase , uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results show the efficiency of the proposed techniques compared to state-of-the-art methods.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 06 Mär 2023 13:33
Letzte Änderung: 22 Mai 2024 08:37
PPN: 509496474
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen