TU Darmstadt / ULB / TUbiblio

Efficient Few-Shot Learning Without Prompts

Tunstall, Lewis ; Reimers, Nils ; Jo, Unso Eun Seo ; Bates, Luke ; Korat, Daniel ; Wasserblat, Moshe ; Pereg, Oren (2022)
Efficient Few-Shot Learning Without Prompts.
2nd Workshop on Efficient Natural Language and Speech Processing. New Orleans, USA (02.12.2022-02.12.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recent few-shot learning methods, such as parameter-efficient fine-tuning (PEFT) and pattern exploiting training (PET), have achieved impressive results in label scarce settings. However, they are difficult to employ since they are highly sensitive to handcrafted prompts, and typically require billion-parameter language models to achieve high accuracy. To address these shortcomings, we propose SETFIT (Sentence Transformer Fine-tuning), an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers (ST). SETFIT works by first finetuning a pretrained ST on a small number of labeled text pairs, in a contrastive Siamese manner. The resulting model is then used to generate rich text embeddings, which are used to train a classification head. This simple framework requires no prompts or verbalizers, and achieves high accuracy with orders of magnitude less parameters and runtime than existing techniques. Our experiments show that SETFIT1 achieves results competitive with PEFT and PET techniques, and outperforms them on a variety of classification tasks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Tunstall, Lewis ; Reimers, Nils ; Jo, Unso Eun Seo ; Bates, Luke ; Korat, Daniel ; Wasserblat, Moshe ; Pereg, Oren
Art des Eintrags: Bibliographie
Titel: Efficient Few-Shot Learning Without Prompts
Sprache: Englisch
Publikationsjahr: 29 November 2022
Veranstaltungstitel: 2nd Workshop on Efficient Natural Language and Speech Processing
Veranstaltungsort: New Orleans, USA
Veranstaltungsdatum: 02.12.2022-02.12.2022
URL / URN: https://neurips2022-enlsp.github.io/index.html
Kurzbeschreibung (Abstract):

Recent few-shot learning methods, such as parameter-efficient fine-tuning (PEFT) and pattern exploiting training (PET), have achieved impressive results in label scarce settings. However, they are difficult to employ since they are highly sensitive to handcrafted prompts, and typically require billion-parameter language models to achieve high accuracy. To address these shortcomings, we propose SETFIT (Sentence Transformer Fine-tuning), an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers (ST). SETFIT works by first finetuning a pretrained ST on a small number of labeled text pairs, in a contrastive Siamese manner. The resulting model is then used to generate rich text embeddings, which are used to train a classification head. This simple framework requires no prompts or verbalizers, and achieves high accuracy with orders of magnitude less parameters and runtime than existing techniques. Our experiments show that SETFIT1 achieves results competitive with PEFT and PET techniques, and outperforms them on a variety of classification tasks.

Freie Schlagworte: UKP_p_seditrah_factcheck
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Zentrale Einrichtungen
Zentrale Einrichtungen > hessian.AI - Hessisches Zentrum für Künstliche Intelligenz
Hinterlegungsdatum: 06 Jun 2023 10:27
Letzte Änderung: 20 Dez 2023 10:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen