TU Darmstadt / ULB / TUbiblio

Enhanced Photoconductivity at Dislocations in SrTiO₃

Kissel, Maximilian ; Porz, Lukas ; Frömling, Till ; Nakamura, Atsutomo ; Rödel, Jürgen ; Alexe, Marin (2023)
Enhanced Photoconductivity at Dislocations in SrTiO₃.
In: Advanced Materials, 2022, 34 (32)
doi: 10.26083/tuprints-00023232
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Dislocations are 1D crystallographic line defects and are usually seen as detrimental to the functional properties of classic semiconductors. It is shown here that this not necessarily accounts for oxide semiconductors in which dislocations are capable of boosting the photoconductivity. Strontium titanate single crystals are controllably deformed to generate a high density of ordered dislocations of two slip systems possessing different mesoscopic arrangements. For both slip systems, nanoscale conductive atomic force microscope investigations reveal a strong enhancement of the photoconductivity around the dislocation cores. Macroscopic in-plane measurements indicate that the two dislocation systems result in different global photoconductivity behavior despite the similar local enhancement. Depending on the arrangement, the global photoresponse can be increased by orders of magnitude. Additionally, indications for a bulk photovoltaic effect enabled by dislocation-surrounding strain fields are observed for the first time. This proves that dislocations in oxide semiconductors can be of large interest for tailoring photoelectric functionalities. Direct evidence that electronic transport is confined to the dislocation core points to a new emerging research field.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Kissel, Maximilian ; Porz, Lukas ; Frömling, Till ; Nakamura, Atsutomo ; Rödel, Jürgen ; Alexe, Marin
Art des Eintrags: Zweitveröffentlichung
Titel: Enhanced Photoconductivity at Dislocations in SrTiO₃
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 32
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00023232
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23232
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Dislocations are 1D crystallographic line defects and are usually seen as detrimental to the functional properties of classic semiconductors. It is shown here that this not necessarily accounts for oxide semiconductors in which dislocations are capable of boosting the photoconductivity. Strontium titanate single crystals are controllably deformed to generate a high density of ordered dislocations of two slip systems possessing different mesoscopic arrangements. For both slip systems, nanoscale conductive atomic force microscope investigations reveal a strong enhancement of the photoconductivity around the dislocation cores. Macroscopic in-plane measurements indicate that the two dislocation systems result in different global photoconductivity behavior despite the similar local enhancement. Depending on the arrangement, the global photoresponse can be increased by orders of magnitude. Additionally, indications for a bulk photovoltaic effect enabled by dislocation-surrounding strain fields are observed for the first time. This proves that dislocations in oxide semiconductors can be of large interest for tailoring photoelectric functionalities. Direct evidence that electronic transport is confined to the dislocation core points to a new emerging research field.

Freie Schlagworte: conductive atomic force microscope, dislocations, microelectrodes, oxide ceramic single crystals, photoconductivity, photovoltaic effect
ID-Nummer: 2203032
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-232323
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 15 Feb 2023 13:17
Letzte Änderung: 16 Feb 2023 06:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen