Terhörst, Philipp ; Ihlefeld, Malte ; Huber, Marco ; Damer, Naser ; Kirchbuchner, Florian ; Raja, Kiran ; Kuijper, Arjan (2023)
QMagFace: Simple and Accurate Quality-Aware Face Recognition.
2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA (03.01.2023-07.01.2023)
doi: 10.1109/WACV56688.2023.00348
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this work, we propose QMagFace, a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced qualityawareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Terhörst, Philipp ; Ihlefeld, Malte ; Huber, Marco ; Damer, Naser ; Kirchbuchner, Florian ; Raja, Kiran ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | QMagFace: Simple and Accurate Quality-Aware Face Recognition |
Sprache: | Englisch |
Publikationsjahr: | 6 Februar 2023 |
Verlag: | IEEE |
Buchtitel: | Proceedings: 2023 IEEE Winter Conference on Applications of Computer Vision |
Veranstaltungstitel: | 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) |
Veranstaltungsort: | Waikoloa, USA |
Veranstaltungsdatum: | 03.01.2023-07.01.2023 |
DOI: | 10.1109/WACV56688.2023.00348 |
Kurzbeschreibung (Abstract): | In this work, we propose QMagFace, a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced qualityawareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available. |
Freie Schlagworte: | Biometrics, Face recognition, Deep learning |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 06 Mär 2023 10:40 |
Letzte Änderung: | 20 Jul 2023 14:32 |
PPN: | 509832776 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |