TU Darmstadt / ULB / TUbiblio

QMagFace: Simple and Accurate Quality-Aware Face Recognition

Terhörst, Philipp ; Ihlefeld, Malte ; Huber, Marco ; Damer, Naser ; Kirchbuchner, Florian ; Raja, Kiran ; Kuijper, Arjan (2023)
QMagFace: Simple and Accurate Quality-Aware Face Recognition.
2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA (03.01.2023-07.01.2023)
doi: 10.1109/WACV56688.2023.00348
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this work, we propose QMagFace, a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced qualityawareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Terhörst, Philipp ; Ihlefeld, Malte ; Huber, Marco ; Damer, Naser ; Kirchbuchner, Florian ; Raja, Kiran ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: QMagFace: Simple and Accurate Quality-Aware Face Recognition
Sprache: Englisch
Publikationsjahr: 6 Februar 2023
Verlag: IEEE
Buchtitel: Proceedings: 2023 IEEE Winter Conference on Applications of Computer Vision
Veranstaltungstitel: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
Veranstaltungsort: Waikoloa, USA
Veranstaltungsdatum: 03.01.2023-07.01.2023
DOI: 10.1109/WACV56688.2023.00348
Kurzbeschreibung (Abstract):

In this work, we propose QMagFace, a simple and effective face recognition solution (QMagFace) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced qualityawareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available.

Freie Schlagworte: Biometrics, Face recognition, Deep learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mär 2023 10:40
Letzte Änderung: 20 Jul 2023 14:32
PPN: 509832776
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen