TU Darmstadt / ULB / TUbiblio

PatchSwap: Boosting the Generalizability of Face Presentation Attack Detection by Identity-aware Patch Swapping

Fang, Meiling ; Ali, Hamza ; Kuijper, Arjan ; Damer, Naser (2022)
PatchSwap: Boosting the Generalizability of Face Presentation Attack Detection by Identity-aware Patch Swapping.
International Joint Conference on Biometrics (IJCB). Abu Dhabi, UAE (10.10.2022-13.10.2022)
doi: 10.1109/IJCB54206.2022.10007946
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Face presentation attack detection (PAD) is essential in mitigating spoofing attack vulnerabilities in face recognition systems. Despite the relatively good detection performance of PADs on known attacks, they tend to be challenged by unknown samples. To address this issue, we present our PatchSwap approach that aims at creating more challenging and complex bona fide, attack, and partial attack samples despite limited training resources. The PatchSwap operates by swapping intra-identity patches between training samples and correspondingly updates their pixel-wise mask label, all under a controlled strategy. The PatchSwap is deployed as an augmentation technique and can be effortlessly integrated into any model training process. The different choices towards our PatchSwap design are exhaustively investigated and proven in detailed studies. We conduct extensive experiments under intra-dataset and cross-dataset scenarios and on three different network backbones. The experimental results showed that the PatchSwap successfully induces significant gains in the PAD performance under different evaluation settings.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Fang, Meiling ; Ali, Hamza ; Kuijper, Arjan ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: PatchSwap: Boosting the Generalizability of Face Presentation Attack Detection by Identity-aware Patch Swapping
Sprache: Englisch
Publikationsjahr: 2022
Ort: Piscataway, NJ
Verlag: IEEE
Buchtitel: 2022 IEEE International Joint Conference on Biometrics
Veranstaltungstitel: International Joint Conference on Biometrics (IJCB)
Veranstaltungsort: Abu Dhabi, UAE
Veranstaltungsdatum: 10.10.2022-13.10.2022
DOI: 10.1109/IJCB54206.2022.10007946
Kurzbeschreibung (Abstract):

Face presentation attack detection (PAD) is essential in mitigating spoofing attack vulnerabilities in face recognition systems. Despite the relatively good detection performance of PADs on known attacks, they tend to be challenged by unknown samples. To address this issue, we present our PatchSwap approach that aims at creating more challenging and complex bona fide, attack, and partial attack samples despite limited training resources. The PatchSwap operates by swapping intra-identity patches between training samples and correspondingly updates their pixel-wise mask label, all under a controlled strategy. The PatchSwap is deployed as an augmentation technique and can be effortlessly integrated into any model training process. The different choices towards our PatchSwap design are exhaustively investigated and proven in detailed studies. We conduct extensive experiments under intra-dataset and cross-dataset scenarios and on three different network backbones. The experimental results showed that the PatchSwap successfully induces significant gains in the PAD performance under different evaluation settings.

Freie Schlagworte: Biometrics, Machine learning, Deep learning, Face recognition, Attack detection
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mär 2023 09:30
Letzte Änderung: 11 Jul 2023 16:12
PPN: 509496350
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen