TU Darmstadt / ULB / TUbiblio

One size does not fit all: Investigating strategies for differentially-private learning across NLP tasks

Senge, Manuel ; Igamberdiev, Timour ; Habernal, Ivan (2022)
One size does not fit all: Investigating strategies for differentially-private learning across NLP tasks.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Preserving privacy in contemporary NLP models allows us to work with sensitive data, but unfortunately comes at a price. We know that stricter privacy guarantees in differentially-private stochastic gradient descent (DP-SGD) generally degrade model performance. However, previous research on the efficiency of DP-SGD in NLP is inconclusive or even counter-intuitive. In this short paper, we provide an extensive analysis of different privacy preserving strategies on seven downstream datasets in five different ‘typical’ NLP tasks with varying complexity using modern neural models based on BERT and XtremeDistil architectures. We show that unlike standard non-private approaches to solving NLP tasks, where bigger is usually better, privacy-preserving strategies do not exhibit a winning pattern, and each task and privacy regime requires a special treatment to achieve adequate performance.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Senge, Manuel ; Igamberdiev, Timour ; Habernal, Ivan
Art des Eintrags: Bibliographie
Titel: One size does not fit all: Investigating strategies for differentially-private learning across NLP tasks
Sprache: Englisch
Publikationsjahr: 7 November 2022
Ort: Abu Dhabi, United Arab Emirates
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
URL / URN: https://aclanthology.org/2022.emnlp-main.496/
Kurzbeschreibung (Abstract):

Preserving privacy in contemporary NLP models allows us to work with sensitive data, but unfortunately comes at a price. We know that stricter privacy guarantees in differentially-private stochastic gradient descent (DP-SGD) generally degrade model performance. However, previous research on the efficiency of DP-SGD in NLP is inconclusive or even counter-intuitive. In this short paper, we provide an extensive analysis of different privacy preserving strategies on seven downstream datasets in five different ‘typical’ NLP tasks with varying complexity using modern neural models based on BERT and XtremeDistil architectures. We show that unlike standard non-private approaches to solving NLP tasks, where bigger is usually better, privacy-preserving strategies do not exhibit a winning pattern, and each task and privacy regime requires a special treatment to achieve adequate performance.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 30 Aug 2023 11:57
Letzte Änderung: 30 Aug 2023 12:08
PPN: 511165455
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen