TU Darmstadt / ULB / TUbiblio

Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Mode

Daheim, Nico ; Thulke, David ; Dugast, Christian ; Ney, Hermann (2022)
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Mode.
2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi, UAE (07.12.2022-11.12.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes’ theorem.One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response.We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets.Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model.Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output.Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (Rashkin et al., 2021), and show that both approaches can be combined to achieve additional improvements.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Daheim, Nico ; Thulke, David ; Dugast, Christian ; Ney, Hermann
Art des Eintrags: Bibliographie
Titel: Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Mode
Sprache: Englisch
Publikationsjahr: Dezember 2022
Verlag: ACL
Buchtitel: Findings of the Association for Computational Linguistics: EMNLP 2022
Veranstaltungstitel: 2022 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Abu Dhabi, UAE
Veranstaltungsdatum: 07.12.2022-11.12.2022
URL / URN: https://aclanthology.org/2022.findings-emnlp.98/
Kurzbeschreibung (Abstract):

In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes’ theorem.One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response.We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets.Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model.Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output.Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (Rashkin et al., 2021), and show that both approaches can be combined to achieve additional improvements.

Freie Schlagworte: UKP_p_seditrah_factcheck, UKP_p_SERMAS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 01 Mär 2023 08:17
Letzte Änderung: 09 Mär 2023 12:38
PPN: 505647834
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen