TU Darmstadt / ULB / TUbiblio

Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking

Baumgärtner, Tim ; Ribeiro, Leonardo F. R. ; Reimers, Nils ; Gurevych, Iryna (2022)
Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking.
2022 Conference on Empirical Methods in Natural Language Processing. Abu Dhabi, UAE (07.12.2022-11.12.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Pairing a lexical retriever with a neural re-ranking model has set state-of-the-art performance on large-scale information retrieval datasets. This pipeline covers scenarios like question answering or navigational queries, however, for information-seeking scenarios, users often provide information on whether a document is relevant to their query in form of clicks or explicit feedback. Therefore, in this work, we explore how relevance feedback can be directly integrated into neural re-ranking models by adopting few-shot and parameter-efficient learning techniques. Specifically, we introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant. Further, we explore Cross-Encoder models that we pre-train using meta-learning and subsequently fine-tune for each query, training only on the feedback documents. To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario. Extensive experiments demonstrate that integrating relevance feedback directly in neural re-ranking models improves their performance, and fusing lexical ranking with our best performing neural re-ranker outperforms all other methods by 5.2% nDCG@20.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Baumgärtner, Tim ; Ribeiro, Leonardo F. R. ; Reimers, Nils ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking
Sprache: Englisch
Publikationsjahr: Dezember 2022
Verlag: ACL
Buchtitel: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2022 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Abu Dhabi, UAE
Veranstaltungsdatum: 07.12.2022-11.12.2022
URL / URN: https://aclanthology.org/2022.emnlp-main.614/
Kurzbeschreibung (Abstract):

Pairing a lexical retriever with a neural re-ranking model has set state-of-the-art performance on large-scale information retrieval datasets. This pipeline covers scenarios like question answering or navigational queries, however, for information-seeking scenarios, users often provide information on whether a document is relevant to their query in form of clicks or explicit feedback. Therefore, in this work, we explore how relevance feedback can be directly integrated into neural re-ranking models by adopting few-shot and parameter-efficient learning techniques. Specifically, we introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant. Further, we explore Cross-Encoder models that we pre-train using meta-learning and subsequently fine-tune for each query, training only on the feedback documents. To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario. Extensive experiments demonstrate that integrating relevance feedback directly in neural re-ranking models improves their performance, and fusing lexical ranking with our best performing neural re-ranker outperforms all other methods by 5.2% nDCG@20.

Freie Schlagworte: UKP_p_square, UKP_p_qa_sci_inf, UKP_p_seditrah_factcheck
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 27 Feb 2023 15:23
Letzte Änderung: 25 Apr 2023 14:53
PPN: 507276027
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen