TU Darmstadt / ULB / TUbiblio

Dislocations in ceramic electrolytes for solid-state Li batteries

Porz, Lukas ; Knez, Daniel ; Scherer, Michael ; Ganschow, Steffen ; Kothleitner, Gerald ; Rettenwander, Daniel (2023)
Dislocations in ceramic electrolytes for solid-state Li batteries.
In: Scientific Reports, 2021, 11
doi: 10.26083/tuprints-00023190
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Porz, Lukas ; Knez, Daniel ; Scherer, Michael ; Ganschow, Steffen ; Kothleitner, Gerald ; Rettenwander, Daniel
Art des Eintrags: Zweitveröffentlichung
Titel: Dislocations in ceramic electrolytes for solid-state Li batteries
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 11
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00023190
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23190
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

High power solid-state Li batteries (SSLB) are hindered by the formation of dendrite-like structures at high current rates. Hence, new design principles are needed to overcome this limitation. By introducing dislocations, we aim to tailor mechanical properties in order to withstand the mechanical stress leading to Li penetration and resulting in a short circuit by a crack-opening mechanism. Such defect engineering, furthermore, appears to enable whisker-like Li metal electrodes for high-rate Li plating. To reach these goals, the challenge of introducing dislocations into ceramic electrolytes needs to be addressed which requires to establish fundamental understanding of the mechanics of dislocations in the particular ceramics. Here we evaluate uniaxial deformation at elevated temperatures as one possible approach to introduce dislocations. By using hot-pressed pellets and single crystals grown by Czochralski method of Li6.4La3Zr1.4Ta0.6O12 garnets as a model system the plastic deformation by more than 10% is demonstrated. While conclusions on the predominating deformation mechanism remain challenging, analysis of activation energy, activation volume, diffusion creep, and the defect structure potentially point to a deformation mechanism involving dislocations. These parameters allow identification of a process window and are a key step on the road of making dislocations available as a design element for SSLB.

ID-Nummer: 8949 (2021)
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-231903
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 08 Feb 2023 13:33
Letzte Änderung: 09 Feb 2023 06:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen