TU Darmstadt / ULB / TUbiblio

Combining Process Monitoring with Text Mining for Anomaly Detection in Discrete Manufacturing

Biegel, Tobias ; Jourdan, Nicolas ; Madreiter, Theresa ; Kohl, Linus ; Fahle, Simon ; Ansari, Fazel ; Kuhlenkötter, Bernd ; Metternich, Joachim (2022)
Combining Process Monitoring with Text Mining for Anomaly Detection in Discrete Manufacturing.
doi: 10.2139/ssrn.4073942
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

One of the major challenges of today's manufacturing industry is the reliable detection of process anomalies and failures in order to reduce unplanned downtimes and avoid quality issues. Process Monitoring (PM) requires the existence of a Normal Operating Condition (NOC) dataset that is used to train the respective algorithm. Obtaining such a NOC dataset involves extensive test runs aside from the actual production. Machine operators often collect a variety of unstructured process specific data in form of protocols, that contain valuable information about the process condition. We propose an approach that utilizes such text data to efficiently create the NOC dataset for a machining process in one of our learning factories. Using the NOC high-frequency machine sensor readings, we train a principal component analysis (PCA)-based model, which can identify anomalous process behavior. The model is consequently evaluated on a holdout test data set and shows promising results. Estimations of the process condition are visualized with two control charts allowing intuitive insights for the machine operator.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Biegel, Tobias ; Jourdan, Nicolas ; Madreiter, Theresa ; Kohl, Linus ; Fahle, Simon ; Ansari, Fazel ; Kuhlenkötter, Bernd ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: Combining Process Monitoring with Text Mining for Anomaly Detection in Discrete Manufacturing
Sprache: Englisch
Publikationsjahr: 2022
Ort: Rochester, NY
Verlag: SSRN by Elsevier B.V.
Buchtitel: Proceedings of the 12th Conference on Learning Factories (CLF 2022)
Reihe: SSRN elibrary
Kollation: 6 Seiten
DOI: 10.2139/ssrn.4073942
Kurzbeschreibung (Abstract):

One of the major challenges of today's manufacturing industry is the reliable detection of process anomalies and failures in order to reduce unplanned downtimes and avoid quality issues. Process Monitoring (PM) requires the existence of a Normal Operating Condition (NOC) dataset that is used to train the respective algorithm. Obtaining such a NOC dataset involves extensive test runs aside from the actual production. Machine operators often collect a variety of unstructured process specific data in form of protocols, that contain valuable information about the process condition. We propose an approach that utilizes such text data to efficiently create the NOC dataset for a machining process in one of our learning factories. Using the NOC high-frequency machine sensor readings, we train a principal component analysis (PCA)-based model, which can identify anomalous process behavior. The model is consequently evaluated on a holdout test data set and shows promising results. Estimations of the process condition are visualized with two control charts allowing intuitive insights for the machine operator.

Freie Schlagworte: Process Monitoring, Text Mining, Anomaly Detection, MSPC
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität
Hinterlegungsdatum: 23 Feb 2023 06:23
Letzte Änderung: 23 Feb 2023 06:40
PPN: 505260972
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen