TU Darmstadt / ULB / TUbiblio

Deep learning for multivariate statistical in-process control in discrete manufacturing: A case study in a sheet metal forming process

Biegel, Tobias ; Jourdan, Nicolas ; Hernandez, Carlos ; Cviko, Amir ; Metternich, Joachim (2022)
Deep learning for multivariate statistical in-process control in discrete manufacturing: A case study in a sheet metal forming process.
In: Procedia CIRP, 107
doi: 10.1016/j.procir.2022.05.002
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Detecting abnormal conditions in manufacturing processes is a crucial task to avoid unplanned downtimes and prevent quality issues. The increasing amount of available high-frequency process data combined with advances in the field of deep autoencoder-based monitoring offers huge potential in enhancing the performance of existing Multivariate Statistical Process Control approaches. We investigate the application of deep auto encoder-based monitoring approaches and experiment with the reconstruction error and the latent representation of the input data to compute Hotelling's T2 and Squared Prediction Error monitoring statistics. The investigated approaches are validated using a real-world sheet metal forming process and show promising results.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Biegel, Tobias ; Jourdan, Nicolas ; Hernandez, Carlos ; Cviko, Amir ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: Deep learning for multivariate statistical in-process control in discrete manufacturing: A case study in a sheet metal forming process
Sprache: Englisch
Publikationsjahr: 2022
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 107
DOI: 10.1016/j.procir.2022.05.002
Kurzbeschreibung (Abstract):

Detecting abnormal conditions in manufacturing processes is a crucial task to avoid unplanned downtimes and prevent quality issues. The increasing amount of available high-frequency process data combined with advances in the field of deep autoencoder-based monitoring offers huge potential in enhancing the performance of existing Multivariate Statistical Process Control approaches. We investigate the application of deep auto encoder-based monitoring approaches and experiment with the reconstruction error and the latent representation of the input data to compute Hotelling's T2 and Squared Prediction Error monitoring statistics. The investigated approaches are validated using a real-world sheet metal forming process and show promising results.

Freie Schlagworte: Deep Learning, Autoencoder, Multivariate Statistical Process Control, Discrete Manufacturing, Anomaly Detection
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität
Hinterlegungsdatum: 06 Feb 2023 07:36
Letzte Änderung: 07 Feb 2023 07:39
PPN: 504383477
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen