TU Darmstadt / ULB / TUbiblio

Chemical gradients in polymer-modified paper sheets—Towards single-layer biomimetic soft robots

Schäfer, Jan-Lukas ; Meckel, Tobias ; Poppinga, Simon ; Biesalski, Markus (2023)
Chemical gradients in polymer-modified paper sheets—Towards single-layer biomimetic soft robots.
In: Biomimetics, 8 (1)
doi: 10.3390/biomimetics8010043
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Biomimetic actuators are typically constructed as functional bi- or multilayers, where actuating and resistance layers together dictate bending responses upon triggering by environmental stimuli. Inspired by motile plant structures, like the stems of the false rose of Jericho (Selaginella lepidophylla), we introduce polymer-modified paper sheets that can act as soft robotic single-layer actuators capable of hygro-responsive bending reactions. A tailored gradient modification of the paper sheet along its thickness entails increased dry and wet tensile strength and allows at the same time for hygro-responsiveness. For the fabrication of such single-layer paper devices, the adsorption behavior of a cross-linkable polymer to cellulose fiber networks was first evaluated. By using different concentrations and drying procedures fine-tuned polymer gradients throughout the thickness can be achieved. Due to the covalent cross-linking of polymer with fibers, these paper samples possess significantly increased dry and wet tensile strength properties. We furthermore investigated these gradient papers with respect to a mechanical deflection during humidity cycling. The highest humidity sensitivity is achieved using eucalyptus paper with a grammage of 150 g m−2 modified with the polymer dissolved in IPA (~13 wt%) possessing a polymer gradient. Our study presents a straightforward approach for the design of novel hygroscopic, paper-based single-layer actuators, which have a high potential for diverse soft robotic and sensor applications.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Schäfer, Jan-Lukas ; Meckel, Tobias ; Poppinga, Simon ; Biesalski, Markus
Art des Eintrags: Bibliographie
Titel: Chemical gradients in polymer-modified paper sheets—Towards single-layer biomimetic soft robots
Sprache: Englisch
Publikationsjahr: 2023
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Biomimetics
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 1
DOI: 10.3390/biomimetics8010043
URL / URN: https://www.mdpi.com/2313-7673/8/1/43
Kurzbeschreibung (Abstract):

Biomimetic actuators are typically constructed as functional bi- or multilayers, where actuating and resistance layers together dictate bending responses upon triggering by environmental stimuli. Inspired by motile plant structures, like the stems of the false rose of Jericho (Selaginella lepidophylla), we introduce polymer-modified paper sheets that can act as soft robotic single-layer actuators capable of hygro-responsive bending reactions. A tailored gradient modification of the paper sheet along its thickness entails increased dry and wet tensile strength and allows at the same time for hygro-responsiveness. For the fabrication of such single-layer paper devices, the adsorption behavior of a cross-linkable polymer to cellulose fiber networks was first evaluated. By using different concentrations and drying procedures fine-tuned polymer gradients throughout the thickness can be achieved. Due to the covalent cross-linking of polymer with fibers, these paper samples possess significantly increased dry and wet tensile strength properties. We furthermore investigated these gradient papers with respect to a mechanical deflection during humidity cycling. The highest humidity sensitivity is achieved using eucalyptus paper with a grammage of 150 g m−2 modified with the polymer dissolved in IPA (~13 wt%) possessing a polymer gradient. Our study presents a straightforward approach for the design of novel hygroscopic, paper-based single-layer actuators, which have a high potential for diverse soft robotic and sensor applications.

Freie Schlagworte: cellulose, fiber, sheet, polymer adsorption, humidity actuated devices, directed transport, wet strength, biomimetics
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Botanischer Garten
07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie > Makromolekulare Chemie und Papierchemie
Hinterlegungsdatum: 01 Feb 2023 09:08
Letzte Änderung: 01 Feb 2023 09:51
PPN: 504216805
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen