TU Darmstadt / ULB / TUbiblio

Design of a Scalable Integrated Nanophotonic Electron Accelerator on a Chip

Niedermayer, Uwe ; Lautenschläger, Jan ; Egenolf, Thilo ; Boine-Frankenheim, Oliver (2021)
Design of a Scalable Integrated Nanophotonic Electron Accelerator on a Chip.
In: Physical Review Applied, 16 (2)
doi: 10.1103/physrevapplied.16.024022
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A simple way of implementing a scalable laser-driven nanophotonic electron accelerator on a chip is presented. The design requires only a single incident laser pulse and can be fabricated straightforwardly on commercial silicon-on-insulator wafers. We investigate the low-energy regime of tabletop electron microscopes where the silicon structures safely allow peak gradients of about 150 MeV/m. By means of a three-dimensional alternating-phase-focusing scheme, we obtain about half of the peak gradient as the average gradient with six-dimensional confinement and full-length scalability. The structures are completely designed within the device layer of the wafer and can be arranged in stages. We choose the stages as energy doublers and outline how errors in the handshake between the stages can be corrected by on-chip steerers. Since the electron pulse length in the attosecond realm is preserved, our chip is the ideal energy booster for ultrafast-electron-diffraction machines, opening the megaelectronvolt scale on tabletop setups.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Niedermayer, Uwe ; Lautenschläger, Jan ; Egenolf, Thilo ; Boine-Frankenheim, Oliver
Art des Eintrags: Bibliographie
Titel: Design of a Scalable Integrated Nanophotonic Electron Accelerator on a Chip
Sprache: Englisch
Publikationsjahr: 12 August 2021
Verlag: APS Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Applied
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 2
DOI: 10.1103/physrevapplied.16.024022
Kurzbeschreibung (Abstract):

A simple way of implementing a scalable laser-driven nanophotonic electron accelerator on a chip is presented. The design requires only a single incident laser pulse and can be fabricated straightforwardly on commercial silicon-on-insulator wafers. We investigate the low-energy regime of tabletop electron microscopes where the silicon structures safely allow peak gradients of about 150 MeV/m. By means of a three-dimensional alternating-phase-focusing scheme, we obtain about half of the peak gradient as the average gradient with six-dimensional confinement and full-length scalability. The structures are completely designed within the device layer of the wafer and can be arranged in stages. We choose the stages as energy doublers and outline how errors in the handshake between the stages can be corrected by on-chip steerers. Since the electron pulse length in the attosecond realm is preserved, our chip is the ideal energy booster for ultrafast-electron-diffraction machines, opening the megaelectronvolt scale on tabletop setups.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Beschleunigerphysik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 16 Feb 2023 09:53
Letzte Änderung: 15 Jun 2023 09:04
PPN: 508616646
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen