Niedermayer, Uwe ; Lautenschläger, Jan ; Egenolf, Thilo ; Boine-Frankenheim, Oliver (2021)
Design of a Scalable Integrated Nanophotonic Electron Accelerator on a Chip.
In: Physical Review Applied, 16 (2)
doi: 10.1103/physrevapplied.16.024022
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
A simple way of implementing a scalable laser-driven nanophotonic electron accelerator on a chip is presented. The design requires only a single incident laser pulse and can be fabricated straightforwardly on commercial silicon-on-insulator wafers. We investigate the low-energy regime of tabletop electron microscopes where the silicon structures safely allow peak gradients of about 150 MeV/m. By means of a three-dimensional alternating-phase-focusing scheme, we obtain about half of the peak gradient as the average gradient with six-dimensional confinement and full-length scalability. The structures are completely designed within the device layer of the wafer and can be arranged in stages. We choose the stages as energy doublers and outline how errors in the handshake between the stages can be corrected by on-chip steerers. Since the electron pulse length in the attosecond realm is preserved, our chip is the ideal energy booster for ultrafast-electron-diffraction machines, opening the megaelectronvolt scale on tabletop setups.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Niedermayer, Uwe ; Lautenschläger, Jan ; Egenolf, Thilo ; Boine-Frankenheim, Oliver |
Art des Eintrags: | Bibliographie |
Titel: | Design of a Scalable Integrated Nanophotonic Electron Accelerator on a Chip |
Sprache: | Englisch |
Publikationsjahr: | 12 August 2021 |
Verlag: | APS Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physical Review Applied |
Jahrgang/Volume einer Zeitschrift: | 16 |
(Heft-)Nummer: | 2 |
DOI: | 10.1103/physrevapplied.16.024022 |
Kurzbeschreibung (Abstract): | A simple way of implementing a scalable laser-driven nanophotonic electron accelerator on a chip is presented. The design requires only a single incident laser pulse and can be fabricated straightforwardly on commercial silicon-on-insulator wafers. We investigate the low-energy regime of tabletop electron microscopes where the silicon structures safely allow peak gradients of about 150 MeV/m. By means of a three-dimensional alternating-phase-focusing scheme, we obtain about half of the peak gradient as the average gradient with six-dimensional confinement and full-length scalability. The structures are completely designed within the device layer of the wafer and can be arranged in stages. We choose the stages as energy doublers and outline how errors in the handshake between the stages can be corrected by on-chip steerers. Since the electron pulse length in the attosecond realm is preserved, our chip is the ideal energy booster for ultrafast-electron-diffraction machines, opening the megaelectronvolt scale on tabletop setups. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Beschleunigerphysik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder |
Hinterlegungsdatum: | 16 Feb 2023 09:53 |
Letzte Änderung: | 15 Jun 2023 09:04 |
PPN: | 508616646 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |