TU Darmstadt / ULB / TUbiblio

Towards Decentralized Parameter Servers for Secure Federated Learning

El-Hindi, Muhammad ; Zhao, Zheguang ; Binnig, Carsten
Hrsg.: Cuzzocrea, Alfredo ; Gusikhin, Oleg ; van der Aalst, Wil M. P. ; Hammoudi, Slimane (2022)
Towards Decentralized Parameter Servers for Secure Federated Learning.
11th International Conference on Data Science, Technology and Applications, DATA 2022. Lisbon, Portugal (11.07.2022-13.07.2022)
doi: 10.5220/0011146300003269
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Federated learning aims to protect the privacy of data owners in a collaborative machine learning setup since training data does not need to be revealed to any other participant involved in the training process. This is achieved by only requiring participants to share locally computed model updates (i.e., gradients), instead of the training data, with a centralized parameter server. However, recent papers have shown that privacy attacks exist which allow this server to reconstruct the training data of individual data owners only from the received gradients. To mitigate this attack, in this paper, we propose a new federated learning framework that decentralizes the parameter server. As part of this contribution, we investigate the configuration space of such a decentralized federated learning framework. Moreover, we propose three promising privacy-preserving techniques, namely model sharding, asynchronous updates and polling intervals for stale parameters. In our evaluation, we observe on different data sets that these techniques can effectively thwart the gradient-based reconstruction attacks on deep learning models, both from the client side and the server side, by reducing the attack results close to random noise.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Herausgeber: Cuzzocrea, Alfredo ; Gusikhin, Oleg ; van der Aalst, Wil M. P. ; Hammoudi, Slimane
Autor(en): El-Hindi, Muhammad ; Zhao, Zheguang ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: Towards Decentralized Parameter Servers for Secure Federated Learning
Sprache: Englisch
Publikationsjahr: 2022
Verlag: SciTePress
Buchtitel: Proceedings of the 11th International Conference on Data Science, Technology and Applications, DATA 2022
Veranstaltungstitel: 11th International Conference on Data Science, Technology and Applications, DATA 2022
Veranstaltungsort: Lisbon, Portugal
Veranstaltungsdatum: 11.07.2022-13.07.2022
DOI: 10.5220/0011146300003269
Kurzbeschreibung (Abstract):

Federated learning aims to protect the privacy of data owners in a collaborative machine learning setup since training data does not need to be revealed to any other participant involved in the training process. This is achieved by only requiring participants to share locally computed model updates (i.e., gradients), instead of the training data, with a centralized parameter server. However, recent papers have shown that privacy attacks exist which allow this server to reconstruct the training data of individual data owners only from the received gradients. To mitigate this attack, in this paper, we propose a new federated learning framework that decentralizes the parameter server. As part of this contribution, we investigate the configuration space of such a decentralized federated learning framework. Moreover, we propose three promising privacy-preserving techniques, namely model sharding, asynchronous updates and polling intervals for stale parameters. In our evaluation, we observe on different data sets that these techniques can effectively thwart the gradient-based reconstruction attacks on deep learning models, both from the client side and the server side, by reducing the attack results close to random noise.

Freie Schlagworte: systems_funding_50900240, systems_funding_50001258, systems_athene, systems_trustdble
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 05 Apr 2023 13:35
Letzte Änderung: 24 Jul 2023 10:57
PPN: 509884407
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen