TU Darmstadt / ULB / TUbiblio

Towards Automatically-Tuned Deep Neural Networks

Mendoza, Hector ; Klein, Aaron ; Feurer, Matthias ; Springenberg, Jost Tobias ; Urban, Matthias ; Burkart, Michael ; Dippel, Maximilian ; Lindauer, Marius ; Hutter, Frank
Hrsg.: Hutter, Frank ; Kotthoff, Lars ; Vanschoren, Joaquin (2019)
Towards Automatically-Tuned Deep Neural Networks.
In: Automated Machine Learning - Methods, Systems, Challenges
doi: 10.1007/978-3-030-05318-5_7
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

Recent advances in AutoML have led to automated tools that can compete with machine learning experts on supervised learning tasks. In this work, we present two versions of Auto-Net, which provide automatically-tuned deep neural networks without any human intervention. The first version, Auto-Net 1.0, builds upon ideas from the competition-winning system Auto-sklearn by using the Bayesian Optimization method SMAC and uses Lasagne as the underlying deep learning (DL) library. The more recent Auto-Net 2.0 builds upon a recent combination of Bayesian Optimization and HyperBand, called BOHB, and uses PyTorch as DL library. To the best of our knowledge, Auto-Net 1.0 was the first automatically-tuned neural network to win competition datasets against human experts (as part of the first AutoML challenge). Further empirical results show that ensembling Auto-Net 1.0 with Auto-sklearn can perform better than either approach alone, and that Auto-Net 2.0 can perform better yet.

Typ des Eintrags: Buchkapitel
Erschienen: 2019
Herausgeber: Hutter, Frank ; Kotthoff, Lars ; Vanschoren, Joaquin
Autor(en): Mendoza, Hector ; Klein, Aaron ; Feurer, Matthias ; Springenberg, Jost Tobias ; Urban, Matthias ; Burkart, Michael ; Dippel, Maximilian ; Lindauer, Marius ; Hutter, Frank
Art des Eintrags: Bibliographie
Titel: Towards Automatically-Tuned Deep Neural Networks
Sprache: Englisch
Publikationsjahr: 18 Mai 2019
Ort: Berlin
Verlag: Springer
Buchtitel: Automated Machine Learning - Methods, Systems, Challenges
Reihe: Springer Series on Challenges in Machine Learning
DOI: 10.1007/978-3-030-05318-5_7
URL / URN: https://link.springer.com/chapter/10.1007/978-3-030-05318-5_...
Kurzbeschreibung (Abstract):

Recent advances in AutoML have led to automated tools that can compete with machine learning experts on supervised learning tasks. In this work, we present two versions of Auto-Net, which provide automatically-tuned deep neural networks without any human intervention. The first version, Auto-Net 1.0, builds upon ideas from the competition-winning system Auto-sklearn by using the Bayesian Optimization method SMAC and uses Lasagne as the underlying deep learning (DL) library. The more recent Auto-Net 2.0 builds upon a recent combination of Bayesian Optimization and HyperBand, called BOHB, and uses PyTorch as DL library. To the best of our knowledge, Auto-Net 1.0 was the first automatically-tuned neural network to win competition datasets against human experts (as part of the first AutoML challenge). Further empirical results show that ensembling Auto-Net 1.0 with Auto-sklearn can perform better than either approach alone, and that Auto-Net 2.0 can perform better yet.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
Hinterlegungsdatum: 08 Feb 2023 09:09
Letzte Änderung: 25 Mai 2023 12:17
PPN: 507990900
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen