Ritter, Marcus ; Geiß, Alexander ; Wehrstein, Johannes ; Calotoiu, Alexandru ; Reimann, Thorsten ; Hoefler, Torsten ; Wolf, Felix (2021)
Noise-Resilient Empirical Performance Modeling with Deep Neural Networks.
35th International Parallel and Distributed Processing Symposium (IPDPS'21). virtual Conference (17.05.2021-21.05.2021)
doi: 10.1109/IPDPS49936.2021.00012
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Empirical performance modeling is a proven instrument to analyze the scaling behavior of HPC applications. Using a set of smaller-scale experiments, it can provide important insights into application behavior at larger scales. Extra-P is an empirical modeling tool that applies linear regression to automatically generate human-readable performance models. Similar to other regression-based modeling techniques, the accuracy of the models created by Extra-P decreases as the amount of noise in the underlying data increases. This is why the performance variability observed in many contemporary systems can become a serious challenge. In this paper, we introduce a novel adaptive modeling approach that makes Extra-P more noise resilient, exploiting the ability of deep neural networks to discover the effects of numerical parameters, such as the number of processes or the problem size, on performance when dealing with noisy measurements. Using synthetic analysis and data from three different case studies, we demonstrate that our solution improves the model accuracy at high noise levels by up to 25% while increasing their predictive power by about 15%.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2021 |
Autor(en): | Ritter, Marcus ; Geiß, Alexander ; Wehrstein, Johannes ; Calotoiu, Alexandru ; Reimann, Thorsten ; Hoefler, Torsten ; Wolf, Felix |
Art des Eintrags: | Bibliographie |
Titel: | Noise-Resilient Empirical Performance Modeling with Deep Neural Networks |
Sprache: | Englisch |
Publikationsjahr: | 28 Juni 2021 |
Ort: | Piscataway, NJ |
Verlag: | IEEE |
Buchtitel: | Proceedings: 2021 35th International Parallel and Distributed Processing Symposium |
Veranstaltungstitel: | 35th International Parallel and Distributed Processing Symposium (IPDPS'21) |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 17.05.2021-21.05.2021 |
DOI: | 10.1109/IPDPS49936.2021.00012 |
Kurzbeschreibung (Abstract): | Empirical performance modeling is a proven instrument to analyze the scaling behavior of HPC applications. Using a set of smaller-scale experiments, it can provide important insights into application behavior at larger scales. Extra-P is an empirical modeling tool that applies linear regression to automatically generate human-readable performance models. Similar to other regression-based modeling techniques, the accuracy of the models created by Extra-P decreases as the amount of noise in the underlying data increases. This is why the performance variability observed in many contemporary systems can become a serious challenge. In this paper, we introduce a novel adaptive modeling approach that makes Extra-P more noise resilient, exploiting the ability of deep neural networks to discover the effects of numerical parameters, such as the number of processes or the problem size, on performance when dealing with noisy measurements. Using synthetic analysis and data from three different case studies, we demonstrate that our solution improves the model accuracy at high noise levels by up to 25% while increasing their predictive power by about 15%. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Data and AI Systems 20 Fachbereich Informatik > Parallele Programmierung Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 02 Feb 2023 08:03 |
Letzte Änderung: | 13 Feb 2024 15:08 |
PPN: | 507736818 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |