TU Darmstadt / ULB / TUbiblio

The Case for Multi-Task Zero-Shot Learning for Databases

Wehrstein, Johannes ; Hilprecht, Benjamin ; Olt, Benjamin ; Luthra, Manisha ; Binnig, Carsten (2022)
The Case for Multi-Task Zero-Shot Learning for Databases.
4th International Workshop on Applied AI for Database Systems and Applications. Sydney, Australia (05.09.2022-05.09.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recently, machine learning has successfully been applied to many database problems such as query optimization, physical design tuning, or cardinality estimation. However, the predominant paradigm to design such learned database components is workload-driven learning, where a representative workload has to be executed on the database to gather training data. This costly procedure has to be repeated for every new database a model should be trained on. Hence, recently it was suggested to train zero-shot cost models that are pretrained once and can generalize to unseen databases out-of-the-box. While the results for the task of cost estimation are promising, it is unclear how to generalize this approach to additional tasks beyond query latency prediction. Hence, in this paper, we propose several directions to generalize zero-shot cost models to other tasks and validate our approaches in two case studies.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Wehrstein, Johannes ; Hilprecht, Benjamin ; Olt, Benjamin ; Luthra, Manisha ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: The Case for Multi-Task Zero-Shot Learning for Databases
Sprache: Englisch
Publikationsjahr: 5 September 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: AIDB2022
Veranstaltungstitel: 4th International Workshop on Applied AI for Database Systems and Applications
Veranstaltungsort: Sydney, Australia
Veranstaltungsdatum: 05.09.2022-05.09.2022
Zugehörige Links:
Kurzbeschreibung (Abstract):

Recently, machine learning has successfully been applied to many database problems such as query optimization, physical design tuning, or cardinality estimation. However, the predominant paradigm to design such learned database components is workload-driven learning, where a representative workload has to be executed on the database to gather training data. This costly procedure has to be repeated for every new database a model should be trained on. Hence, recently it was suggested to train zero-shot cost models that are pretrained once and can generalize to unseen databases out-of-the-box. While the results for the task of cost estimation are promising, it is unclear how to generalize this approach to additional tasks beyond query latency prediction. Hence, in this paper, we propose several directions to generalize zero-shot cost models to other tasks and validate our approaches in two case studies.

Freie Schlagworte: systems_maki, systems_funding_52115350, databases, ml, learned database components, zero-shot learning, MV selection, ML4DB
Zusätzliche Informationen:

Held with VLDB 2022

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
TU-Projekte: DFG|SFB1053|SFB1053 TPZ Steinmet
Hinterlegungsdatum: 04 Apr 2023 12:48
Letzte Änderung: 04 Apr 2023 12:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen