TU Darmstadt / ULB / TUbiblio

Dynamic stabilization of a hydrogen premixed flame in a narrow channel

Vance, F. H. ; Scholtissek, A. ; de Goey, P. ; van Oijen, J. ; Hasse, C. (2023)
Dynamic stabilization of a hydrogen premixed flame in a narrow channel.
In: Combustion and Flame, 248
doi: 10.1016/j.combustflame.2022.112560
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Combustion of hydrogen can help in reducing carbon-based emissions but it also poses unique challenges related to the high flame speed and Lewis number effects of the hydrogen flame. When operated with conventional burners, a hydrogen flame can flashback at higher volumetric flow rates than a methane flame due to the difference in stabilization mechanisms of the two fuels. Due to these differences, conventional burners cannot offer similar operational ranges for hydrogen than that for hydrocarbon flames. An exploration into the unique stabilization behaviour of hydrogen flames is required which could help in envisioning non-conventional burner concepts for keeping hydrogen flames stable. Stability conditions, which describe the kinematics of premixed flames with spatially and temporally changing flow parameters, are crucial for such an exploration. Stability conditions are usually hypothesized for stable flames, where a flame upon perturbation is assumed to return to its original position. Alternatively, in the case of flashback/blow-off, it refers to a flame moving upstream of the burner or being convected out of the domain. However, it is also of interest to understand how and why a flame could move to a new location when the velocity and strain fields are varying with time and space at the original and the new location. In this paper, we investigate the flame stabilization by 1) observing the hydrogen flame’s upstream movement in a multi-slit configuration when a geometrical change is made, and 2) changing strain and velocity fields in a dynamic and periodic manner using numerical tools such that the unique behaviour of a hydrogen flame can be captured. We vary the location of high flow strain periodically in a channel by manipulating the boundary condition along a wall. It is found that a hydrogen flame follows this point in a periodic manner, also propagating against the inflow which is considerably faster than its unstretched burning velocity. Spatial and temporal stability conditions, that explain the mechanism behind the flame’s movement from its original position to a new position, are analyzed from the simulation data, advancing our knowledge on the flame movement in an unsteady setting and providing important insights into the stabilization mechanism of hydrogen flames.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Vance, F. H. ; Scholtissek, A. ; de Goey, P. ; van Oijen, J. ; Hasse, C.
Art des Eintrags: Bibliographie
Titel: Dynamic stabilization of a hydrogen premixed flame in a narrow channel
Sprache: Englisch
Publikationsjahr: Februar 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Combustion and Flame
Jahrgang/Volume einer Zeitschrift: 248
DOI: 10.1016/j.combustflame.2022.112560
URL / URN: https://www.sciencedirect.com/science/article/pii/S001021802...
Kurzbeschreibung (Abstract):

Combustion of hydrogen can help in reducing carbon-based emissions but it also poses unique challenges related to the high flame speed and Lewis number effects of the hydrogen flame. When operated with conventional burners, a hydrogen flame can flashback at higher volumetric flow rates than a methane flame due to the difference in stabilization mechanisms of the two fuels. Due to these differences, conventional burners cannot offer similar operational ranges for hydrogen than that for hydrocarbon flames. An exploration into the unique stabilization behaviour of hydrogen flames is required which could help in envisioning non-conventional burner concepts for keeping hydrogen flames stable. Stability conditions, which describe the kinematics of premixed flames with spatially and temporally changing flow parameters, are crucial for such an exploration. Stability conditions are usually hypothesized for stable flames, where a flame upon perturbation is assumed to return to its original position. Alternatively, in the case of flashback/blow-off, it refers to a flame moving upstream of the burner or being convected out of the domain. However, it is also of interest to understand how and why a flame could move to a new location when the velocity and strain fields are varying with time and space at the original and the new location. In this paper, we investigate the flame stabilization by 1) observing the hydrogen flame’s upstream movement in a multi-slit configuration when a geometrical change is made, and 2) changing strain and velocity fields in a dynamic and periodic manner using numerical tools such that the unique behaviour of a hydrogen flame can be captured. We vary the location of high flow strain periodically in a channel by manipulating the boundary condition along a wall. It is found that a hydrogen flame follows this point in a periodic manner, also propagating against the inflow which is considerably faster than its unstretched burning velocity. Spatial and temporal stability conditions, that explain the mechanism behind the flame’s movement from its original position to a new position, are analyzed from the simulation data, advancing our knowledge on the flame movement in an unsteady setting and providing important insights into the stabilization mechanism of hydrogen flames.

Freie Schlagworte: Hydrogen, Stabilization, Lewis number, Flame dynamics, Preferential diffusion
Zusätzliche Informationen:

Artikel-ID: 112560

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Hinterlegungsdatum: 20 Jan 2023 10:17
Letzte Änderung: 23 Jan 2023 06:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen