TU Darmstadt / ULB / TUbiblio

Unsupervised Driving Event Discovery Based on Vehicle CAN-data

Kreutz, Thomas ; Esbel, Ousama ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro (2022)
Unsupervised Driving Event Discovery Based on Vehicle CAN-data.
25th International Conference on Intelligent Transportation Systems. Macau, Peoples Republik of China (08.10.2022-12.10.2022)
doi: 10.1109/ITSC55140.2022.9922158
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The data collected from a vehicle's Controller Area Network (CAN) can quickly exceed human analysis or annotation capabilities when considering fleets of vehicles, which stresses the importance of unsupervised machine learning methods. This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner. The approach builds on self-supervised learning (SSL) for multivariate time series to distinguish different driving events in the learned latent space. We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events. With our approach, we evaluate the applicability of recent time series-related contrastive and generative SSL techniques to learn representations that distinguish driving events. Compared to state-of-the-art (SOTA) generative SSL methods for driving event discovery, we find that contrastive learning approaches reach similar performance.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Kreutz, Thomas ; Esbel, Ousama ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro
Art des Eintrags: Bibliographie
Titel: Unsupervised Driving Event Discovery Based on Vehicle CAN-data
Sprache: Englisch
Publikationsjahr: 1 November 2022
Verlag: IEEE
Buchtitel: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
Veranstaltungstitel: 25th International Conference on Intelligent Transportation Systems
Veranstaltungsort: Macau, Peoples Republik of China
Veranstaltungsdatum: 08.10.2022-12.10.2022
DOI: 10.1109/ITSC55140.2022.9922158
Zugehörige Links:
Kurzbeschreibung (Abstract):

The data collected from a vehicle's Controller Area Network (CAN) can quickly exceed human analysis or annotation capabilities when considering fleets of vehicles, which stresses the importance of unsupervised machine learning methods. This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner. The approach builds on self-supervised learning (SSL) for multivariate time series to distinguish different driving events in the learned latent space. We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events. With our approach, we evaluate the applicability of recent time series-related contrastive and generative SSL techniques to learn representations that distinguish driving events. Compared to state-of-the-art (SOTA) generative SSL methods for driving event discovery, we find that contrastive learning approaches reach similar performance.

Freie Schlagworte: emergenCITY, emergenCITY_INF
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 23 Jan 2023 14:25
Letzte Änderung: 19 Jan 2024 19:31
PPN: 505591537
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen