TU Darmstadt / ULB / TUbiblio

Fermi energy, electrical conductivity, and the energy gap of NaNbO3

Bein, Nicole S. ; Kmet, Brigita ; Rojac, Tadej ; Golob, Andreja Benčan ; Malič, Barbara ; Moxter, Julian ; Schneider, Thorsten ; Fulanovic, Lovro ; Azadeh, Maryam ; Frömling, Till ; Egert, Sonja ; Wang, Hongguang ; Aken, Peter van ; Schwarzkopf, Jutta ; Klein, Andreas (2022)
Fermi energy, electrical conductivity, and the energy gap of NaNbO3.
In: Physical Review Materials, 6 (8)
doi: 10.1103/PhysRevMaterials.6.084404
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The energy of the valence band maximum of NaNbO3 is determined from the Schottky barrier heights at the contacts with low work function Sn-doped In2O3 and high work function RuO2 by means of x-ray photoelectron spectroscopy with in situ interface preparation. The measurements reveal a valence-band edge energy, which is comparable to that of SrTiO3 and BaTiO3. The energy gap of SrTiO3 and BaTiO3 is 3.2eV and comparable to the values of 3.4eVto3.5eV, which are determined by means of optical and electron energy loss spectroscopy for NaNbO3. It is therefore expected that the conduction band minimum of NaNbO3 is also located at a similar energy as the conduction band minimum of SrTiO3 and BaTiO3. If this is the case, it can be expected that donor doping of NaNbO3 leads to an electrical conductivity, which is comparable to those of donor-doped SrTiO3 and BaTiO3 (up to ∼ 1S/cm−1). In contrast, Sr- and Ca-doped NaNbO3 bulk ceramics exhibit a room temperature conductivity up to 10×10−10S/cm−1, only slightly higher than that of NaNbO3. High-field conductivity measurements and impedance spectroscopy give no indication that the low conductivity is caused by insulating grain boundaries separating electrically conductive grains. It is therefore suggested that the energy gap of NaNbO3 is substantially higher than the gap of 3.4eVto3.5eV determined from optical spectroscopy reported in literature and from electron energy loss spectroscopy within this paper, as also suggested from electronic structure calculations of LiNbO3

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Bein, Nicole S. ; Kmet, Brigita ; Rojac, Tadej ; Golob, Andreja Benčan ; Malič, Barbara ; Moxter, Julian ; Schneider, Thorsten ; Fulanovic, Lovro ; Azadeh, Maryam ; Frömling, Till ; Egert, Sonja ; Wang, Hongguang ; Aken, Peter van ; Schwarzkopf, Jutta ; Klein, Andreas
Art des Eintrags: Bibliographie
Titel: Fermi energy, electrical conductivity, and the energy gap of NaNbO3
Sprache: Englisch
Publikationsjahr: 3 August 2022
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Materials
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 8
DOI: 10.1103/PhysRevMaterials.6.084404
Kurzbeschreibung (Abstract):

The energy of the valence band maximum of NaNbO3 is determined from the Schottky barrier heights at the contacts with low work function Sn-doped In2O3 and high work function RuO2 by means of x-ray photoelectron spectroscopy with in situ interface preparation. The measurements reveal a valence-band edge energy, which is comparable to that of SrTiO3 and BaTiO3. The energy gap of SrTiO3 and BaTiO3 is 3.2eV and comparable to the values of 3.4eVto3.5eV, which are determined by means of optical and electron energy loss spectroscopy for NaNbO3. It is therefore expected that the conduction band minimum of NaNbO3 is also located at a similar energy as the conduction band minimum of SrTiO3 and BaTiO3. If this is the case, it can be expected that donor doping of NaNbO3 leads to an electrical conductivity, which is comparable to those of donor-doped SrTiO3 and BaTiO3 (up to ∼ 1S/cm−1). In contrast, Sr- and Ca-doped NaNbO3 bulk ceramics exhibit a room temperature conductivity up to 10×10−10S/cm−1, only slightly higher than that of NaNbO3. High-field conductivity measurements and impedance spectroscopy give no indication that the low conductivity is caused by insulating grain boundaries separating electrically conductive grains. It is therefore suggested that the energy gap of NaNbO3 is substantially higher than the gap of 3.4eVto3.5eV determined from optical spectroscopy reported in literature and from electron energy loss spectroscopy within this paper, as also suggested from electronic structure calculations of LiNbO3

ID-Nummer: Artikel-ID: 084404
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiesysteme > Hochspannungstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Elektrische Energiesysteme
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 09 Jan 2023 07:03
Letzte Änderung: 06 Nov 2024 13:37
PPN: 503501824
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen