TU Darmstadt / ULB / TUbiblio

Fast harmonic tetrahedral mesh optimization

Ströter, Daniel ; Mueller-Roemer, Johannes Sebastian ; Weber, Daniel ; Fellner, Dieter W. (2022)
Fast harmonic tetrahedral mesh optimization.
In: The Visual Computer, 38 (9-10)
doi: 10.1007/s00371-022-02547-6
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Mesh optimization is essential to enable sufficient element quality for numerical methods such as the finite element method (FEM). Depending on the required accuracy and geometric detail, a mesh with many elements is necessary to resolve small-scale details. Sequential optimization of large meshes often imposes long run times. This is especially an issue for Delaunay-based methods. Recently, the notion of harmonic triangulations [1] was evaluated for tetrahedral meshes, revealing significantly faster run times than competing Delaunay-based methods. A crucial aspect for efficiency and high element quality is boundary treatment. We investigate directional derivatives for boundary treatment and massively parallel GPUs for mesh optimization. Parallel flipping achieves compelling speedups by up to 318 ×. We accelerate harmonic mesh optimization by 119 × for boundary preservation and 78 × for moving every boundary vertex, while producing superior mesh quality.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ströter, Daniel ; Mueller-Roemer, Johannes Sebastian ; Weber, Daniel ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Fast harmonic tetrahedral mesh optimization
Sprache: Englisch
Publikationsjahr: September 2022
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Visual Computer
Jahrgang/Volume einer Zeitschrift: 38
(Heft-)Nummer: 9-10
DOI: 10.1007/s00371-022-02547-6
Kurzbeschreibung (Abstract):

Mesh optimization is essential to enable sufficient element quality for numerical methods such as the finite element method (FEM). Depending on the required accuracy and geometric detail, a mesh with many elements is necessary to resolve small-scale details. Sequential optimization of large meshes often imposes long run times. This is especially an issue for Delaunay-based methods. Recently, the notion of harmonic triangulations [1] was evaluated for tetrahedral meshes, revealing significantly faster run times than competing Delaunay-based methods. A crucial aspect for efficiency and high element quality is boundary treatment. We investigate directional derivatives for boundary treatment and massively parallel GPUs for mesh optimization. Parallel flipping achieves compelling speedups by up to 318 ×. We accelerate harmonic mesh optimization by 119 × for boundary preservation and 78 × for moving every boundary vertex, while producing superior mesh quality.

Freie Schlagworte: GPGPU, Numerical optimization, Simplicial meshes, Simulation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 06 Jan 2023 10:15
Letzte Änderung: 10 Jan 2023 15:51
PPN: 503527246
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen