TU Darmstadt / ULB / TUbiblio

Coherent Precipitates with Strong Domain Wall Pinning in Alkaline Niobate Ferroelectrics

Zhao, Changhao ; Gao, Shuang ; Kleebe, Hans‐Joachim ; Tan, Xiaoli ; Koruza, Jurij ; Rödel, Jürgen (2022)
Coherent Precipitates with Strong Domain Wall Pinning in Alkaline Niobate Ferroelectrics.
In: Advanced Materials, 2022, 34 (38)
doi: 10.26083/tuprints-00022892
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO₃ (LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Zhao, Changhao ; Gao, Shuang ; Kleebe, Hans‐Joachim ; Tan, Xiaoli ; Koruza, Jurij ; Rödel, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Coherent Precipitates with Strong Domain Wall Pinning in Alkaline Niobate Ferroelectrics
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 38
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00022892
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22892
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO₃ (LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.

Freie Schlagworte: electromechanical hardening, high‐power properties, mechanical quality factor, niobates, precipitation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-228921
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 23 Dez 2022 13:47
Letzte Änderung: 28 Dez 2022 07:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen