TU Darmstadt / ULB / TUbiblio

Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3

Behrendt, Annika ; Golchin, Pegah ; König, Filip ; Mulnaes, Daniel ; Stalke, Amelie ; Dröge, Carola ; Keitel, Verena ; Gohlke, Holger (2022)
Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3.
In: Hepatology Communications, 2022, 6 (11)
doi: 10.26083/tuprints-00022905
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning‐based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen‐2, I‐Mutant2.0, MUpro, MAESTRO, and PON‐P2 along with other variant properties, such as half‐sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single‐site missense variants (on an external test set: F1‐score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni‐duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3‐specific prediction tool Vasor can provide reliable predictions of single‐site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Behrendt, Annika ; Golchin, Pegah ; König, Filip ; Mulnaes, Daniel ; Stalke, Amelie ; Dröge, Carola ; Keitel, Verena ; Gohlke, Holger
Art des Eintrags: Zweitveröffentlichung
Titel: Vasor: Accurate prediction of variant effects for amino acid substitutions in multidrug resistance protein 3
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Hepatology Communications
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 11
DOI: 10.26083/tuprints-00022905
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22905
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning‐based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen‐2, I‐Mutant2.0, MUpro, MAESTRO, and PON‐P2 along with other variant properties, such as half‐sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single‐site missense variants (on an external test set: F1‐score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni‐duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3‐specific prediction tool Vasor can provide reliable predictions of single‐site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-229052
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
Hinterlegungsdatum: 23 Dez 2022 13:09
Letzte Änderung: 02 Jan 2023 07:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen