TU Darmstadt / ULB / TUbiblio

Evaluation of whole graph embedding techniques for a clustering task in the manufacturing domain

Iskandar, Yusef (2022)
Evaluation of whole graph embedding techniques for a clustering task in the manufacturing domain.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00022340
Masterarbeit, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Production systems in manufacturing consume and generate data. Representing the relationships between subsystems and their associated data is complex, but suitable for Knowledge Graphs (KG), which allow us to visualize the relationships between subsystems and store their measurement data. In this work, KG act as a feature engineering technique for a clustering task by converting KG into Euclidean space with so-called graph embeddings and serving as input to a clustering algorithm. The Python library Karate Club proposes 10 different technologies for embedding whole graphs, i.e., only one vector is generated for each graph. These were successfully tested on benchmark datasets that include social media platforms and chemical or biochemical structures. This work presents the potential of graph embeddings for the manufacturing domain for a clustering task by modifying and evaluating Karate Club’s techniques for a manufacturing dataset. First, an introduction to graph theory is given and the state of the art in whole graph embedding techniques is explained. Second, the Bosch production line dataset is examined with an Exploratory Data Analysis (EDA), and a graph data model for directed and undirected graphs is defined based on the results. Third, a data processing pipeline is developed to generate graph embeddings from the raw data. Finally, the graph embeddings are used as input to a clustering algorithm, and a quantitative comparison of the performance of the techniques is conducted.

Typ des Eintrags: Masterarbeit
Erschienen: 2022
Autor(en): Iskandar, Yusef
Art des Eintrags: Erstveröffentlichung
Titel: Evaluation of whole graph embedding techniques for a clustering task in the manufacturing domain
Sprache: Englisch
Referenten: Metternich, Prof. Dr. Joachim ; Bretones Cassoli, M. Sc. Beatriz
Publikationsjahr: 2022
Ort: Darmstadt
Kollation: 83, V Seiten
DOI: 10.26083/tuprints-00022340
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22340
Kurzbeschreibung (Abstract):

Production systems in manufacturing consume and generate data. Representing the relationships between subsystems and their associated data is complex, but suitable for Knowledge Graphs (KG), which allow us to visualize the relationships between subsystems and store their measurement data. In this work, KG act as a feature engineering technique for a clustering task by converting KG into Euclidean space with so-called graph embeddings and serving as input to a clustering algorithm. The Python library Karate Club proposes 10 different technologies for embedding whole graphs, i.e., only one vector is generated for each graph. These were successfully tested on benchmark datasets that include social media platforms and chemical or biochemical structures. This work presents the potential of graph embeddings for the manufacturing domain for a clustering task by modifying and evaluating Karate Club’s techniques for a manufacturing dataset. First, an introduction to graph theory is given and the state of the art in whole graph embedding techniques is explained. Second, the Bosch production line dataset is examined with an Exploratory Data Analysis (EDA), and a graph data model for directed and undirected graphs is defined based on the results. Third, a data processing pipeline is developed to generate graph embeddings from the raw data. Finally, the graph embeddings are used as input to a clustering algorithm, and a quantitative comparison of the performance of the techniques is conducted.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-223405
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
Hinterlegungsdatum: 20 Dez 2022 12:52
Letzte Änderung: 21 Dez 2022 08:32
PPN:
Referenten: Metternich, Prof. Dr. Joachim ; Bretones Cassoli, M. Sc. Beatriz
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen