Chen, Yongchao ; Tian, Chuanmu ; Jiang, Tianshu ; Maheu, Clément ; Hofmann, Jan P. ; Molina-Luna, Leopoldo ; Riedel, Ralf ; Yu, Zhaoju (2022)
Single-Source-Precursor Derived Transition Metal Alloys Embedded in Nitrogen-Doped Porous Carbons as Efficient Oxygen Evolution Electrocatalysts.
In: ChemPlusChem, 87 (12)
doi: 10.1002/cplu.202200338
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective carbon shell encapsulated metal (Fe, Co, Ni) nanoparticles and their alloys supported on in-situ formed N-doped graphene/carbon nanotube hybrid is synthesized from novel single-source-precursors (SSP). The precursors are synthesized by a facile one-pot reaction of tannic acid with polyethylenimine and different metal ions and subsequent pyrolysis of the SSP. Benefiting from the heteroatom doping of carbon and formation of well-encapsulated metal/alloy nanoparticles, the obtained FeNi@NC-900 catalyst possesses lowest overpotentials of 310 mV to achieve a current density of 10 mA cm−2 for OER with a small Tafel slope value of 45 mV dec−1, indicating excellent catalytic performance due to the following features: (1) A synergistic electronic effect among metal alloy nanoparticles, nitrogen-doped carbon, and entangled carbon nanotubes; (2) penetration of electrolyte is promoted towards the active sites through the porous structure of the formed mesoporous carbon clusters; (3) the unique core-shell nanostructure of the hybrid material effectively curbs the degradation of electrocatalyst by protecting the alloy nanoparticles from harsh electrolyte. This work advances an inexpensive and facile method towards the development of transition metal-based hybrid material for potential energy storage and conversion.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Chen, Yongchao ; Tian, Chuanmu ; Jiang, Tianshu ; Maheu, Clément ; Hofmann, Jan P. ; Molina-Luna, Leopoldo ; Riedel, Ralf ; Yu, Zhaoju |
Art des Eintrags: | Bibliographie |
Titel: | Single-Source-Precursor Derived Transition Metal Alloys Embedded in Nitrogen-Doped Porous Carbons as Efficient Oxygen Evolution Electrocatalysts |
Sprache: | Englisch |
Publikationsjahr: | 27 November 2022 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | ChemPlusChem |
Jahrgang/Volume einer Zeitschrift: | 87 |
(Heft-)Nummer: | 12 |
DOI: | 10.1002/cplu.202200338 |
Kurzbeschreibung (Abstract): | Carbon supported metallic nanomaterials are of great interest due to their low-cost, high durability and promising functional performance. Herein, a highly active oxygen evolution reaction (OER) electrocatalyst comprised of defective carbon shell encapsulated metal (Fe, Co, Ni) nanoparticles and their alloys supported on in-situ formed N-doped graphene/carbon nanotube hybrid is synthesized from novel single-source-precursors (SSP). The precursors are synthesized by a facile one-pot reaction of tannic acid with polyethylenimine and different metal ions and subsequent pyrolysis of the SSP. Benefiting from the heteroatom doping of carbon and formation of well-encapsulated metal/alloy nanoparticles, the obtained FeNi@NC-900 catalyst possesses lowest overpotentials of 310 mV to achieve a current density of 10 mA cm−2 for OER with a small Tafel slope value of 45 mV dec−1, indicating excellent catalytic performance due to the following features: (1) A synergistic electronic effect among metal alloy nanoparticles, nitrogen-doped carbon, and entangled carbon nanotubes; (2) penetration of electrolyte is promoted towards the active sites through the porous structure of the formed mesoporous carbon clusters; (3) the unique core-shell nanostructure of the hybrid material effectively curbs the degradation of electrocatalyst by protecting the alloy nanoparticles from harsh electrolyte. This work advances an inexpensive and facile method towards the development of transition metal-based hybrid material for potential energy storage and conversion. |
Zusätzliche Informationen: | Artikel-ID: e202200338 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien |
Hinterlegungsdatum: | 21 Dez 2022 09:38 |
Letzte Änderung: | 28 Dez 2022 10:44 |
PPN: | 503203270 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |