TU Darmstadt / ULB / TUbiblio

Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution

Schweidler, Simon ; Tang, Yushu ; Lin, Ling ; Karkera, Guruprakash ; Alsawaf, Alaa ; Bernadet, Lucile ; Breitung, Ben ; Hahn, Horst ; Fichtner, Maximilian ; Tarancón, Albert ; Botros, Miriam (2022)
Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution.
In: Frontiers in Energy Research, 2022, 10
doi: 10.26083/tuprints-00023010
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

High-entropy materials offer a wide range of possibilities for synthesizing new functional ceramics for different applications. Many synthesis methods have been explored to achieve a single-phase structure incorporating several different elements, yet a comparison between the synthesis methods is crucial to identify the new dimension such complex ceramics bring to material properties. As known for ceramic materials, the synthesis procedure usually has a significant influence on powder morphology, elemental distribution, particle size and powder processability. Properties that need to be tailored according to specific applications. Therefore, in this study perovskite-type high-entropy materials (Gd₀.₂La₀.₂₋ₓ SrₓNd₀.₂Sm₀.₂Y₀.₂) (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)O₃ (x = 0 and x = 0.2) are synthesized for the first time using mechanochemical synthesis and a modified Pechini method. The comparison of different syntheses allows, not only tailoring of the constituent elements of high-entropy materials, but also to optimize the synthesis method as needed to overcome limitations of conventional ceramics. To exploit the novel materials for a variety of energy applications, their catalytic activity for oxygen evolution reaction was characterized. This paves the way for their integration into, e.g., regenerative fuel cells and metal air batteries.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Schweidler, Simon ; Tang, Yushu ; Lin, Ling ; Karkera, Guruprakash ; Alsawaf, Alaa ; Bernadet, Lucile ; Breitung, Ben ; Hahn, Horst ; Fichtner, Maximilian ; Tarancón, Albert ; Botros, Miriam
Art des Eintrags: Zweitveröffentlichung
Titel: Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Frontiers Media S.A.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Frontiers in Energy Research
Jahrgang/Volume einer Zeitschrift: 10
Kollation: 13 Seiten
DOI: 10.26083/tuprints-00023010
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23010
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

High-entropy materials offer a wide range of possibilities for synthesizing new functional ceramics for different applications. Many synthesis methods have been explored to achieve a single-phase structure incorporating several different elements, yet a comparison between the synthesis methods is crucial to identify the new dimension such complex ceramics bring to material properties. As known for ceramic materials, the synthesis procedure usually has a significant influence on powder morphology, elemental distribution, particle size and powder processability. Properties that need to be tailored according to specific applications. Therefore, in this study perovskite-type high-entropy materials (Gd₀.₂La₀.₂₋ₓ SrₓNd₀.₂Sm₀.₂Y₀.₂) (Co₀.₂Cr₀.₂Fe₀.₂Mn₀.₂Ni₀.₂)O₃ (x = 0 and x = 0.2) are synthesized for the first time using mechanochemical synthesis and a modified Pechini method. The comparison of different syntheses allows, not only tailoring of the constituent elements of high-entropy materials, but also to optimize the synthesis method as needed to overcome limitations of conventional ceramics. To exploit the novel materials for a variety of energy applications, their catalytic activity for oxygen evolution reaction was characterized. This paves the way for their integration into, e.g., regenerative fuel cells and metal air batteries.

Freie Schlagworte: high-entropy materials, oxygen evolution reaction (OER), perovskite-type oxide, catalysis, water splitting, energy storage and conversion
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-230106
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 19 Dez 2022 12:16
Letzte Änderung: 20 Dez 2022 13:50
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen