Bott, Andreas ; Janke, Tim ; Steinke, Florian (2023)
Deep learning-enabled MCMC for probabilistic state estimation in district heating grids.
In: Applied Energy, 336
doi: 10.1016/j.apenergy.2023.120837
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Flexible district heating grids form an important part of future, low-carbon energy systems. We examine probabilistic state estimation in such grids, i.e., we aim to estimate the posterior probability distribution over all grid state variables such as pressures, temperatures, and mass flows conditional on measurements of a subset of these states. Since the posterior state distribution does not belong to a standard class of probability distributions, we use Markov Chain Monte Carlo (MCMC) sampling in the space of network heat exchanges and evaluate the samples in the grid state space to estimate the posterior. Converting the heat exchange samples into grid states by solving the non-linear grid equations makes this approach computationally burdensome. However, we propose to speed it up by employing a deep neural network that is trained to approximate the solution of the exact but slow non-linear solver. This novel approach is shown to deliver highly accurate posterior distributions both for classic tree-shaped as well as meshed heating grids, at significantly reduced computational costs that are acceptable for online control. Our state estimation approach thus enables tightening the safety margins for temperature and pressure control and thereby a more efficient grid operation.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Bott, Andreas ; Janke, Tim ; Steinke, Florian |
Art des Eintrags: | Bibliographie |
Titel: | Deep learning-enabled MCMC for probabilistic state estimation in district heating grids |
Sprache: | Englisch |
Publikationsjahr: | 15 April 2023 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Energy |
Jahrgang/Volume einer Zeitschrift: | 336 |
DOI: | 10.1016/j.apenergy.2023.120837 |
Kurzbeschreibung (Abstract): | Flexible district heating grids form an important part of future, low-carbon energy systems. We examine probabilistic state estimation in such grids, i.e., we aim to estimate the posterior probability distribution over all grid state variables such as pressures, temperatures, and mass flows conditional on measurements of a subset of these states. Since the posterior state distribution does not belong to a standard class of probability distributions, we use Markov Chain Monte Carlo (MCMC) sampling in the space of network heat exchanges and evaluate the samples in the grid state space to estimate the posterior. Converting the heat exchange samples into grid states by solving the non-linear grid equations makes this approach computationally burdensome. However, we propose to speed it up by employing a deep neural network that is trained to approximate the solution of the exact but slow non-linear solver. This novel approach is shown to deliver highly accurate posterior distributions both for classic tree-shaped as well as meshed heating grids, at significantly reduced computational costs that are acceptable for online control. Our state estimation approach thus enables tightening the safety margins for temperature and pressure control and thereby a more efficient grid operation. |
Freie Schlagworte: | State estimation, District heating grids, Probabilistic state estimation, Deep neural networks, Markov chain, Monte Carlo |
Zusätzliche Informationen: | Art.No.: 120837 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Energieinformationsnetze und Systeme (EINS) 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik Forschungsfelder Forschungsfelder > Energy and Environment Forschungsfelder > Energy and Environment > Integrated Energy Systems |
Hinterlegungsdatum: | 06 Mär 2023 11:11 |
Letzte Änderung: | 06 Mär 2023 11:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |