TU Darmstadt / ULB / TUbiblio

How to Build the Optimal Magnet Assembly for Magnetocaloric Cooling: Structural Optimization with Isogeometric Analysis

Wiesheu, Michael ; Merkel, Melina ; Sittig, Tim ; Benke, Dimitri ; Fries, Max ; Schöps, Sebastian ; Weeger, Oliver ; Cortes Garcia, Idoia (2022)
How to Build the Optimal Magnet Assembly for Magnetocaloric Cooling: Structural Optimization with Isogeometric Analysis.
In: ArXiv e-prints
doi: 10.48550/arXiv.2212.06580
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Wiesheu, Michael ; Merkel, Melina ; Sittig, Tim ; Benke, Dimitri ; Fries, Max ; Schöps, Sebastian ; Weeger, Oliver ; Cortes Garcia, Idoia
Art des Eintrags: Bibliographie
Titel: How to Build the Optimal Magnet Assembly for Magnetocaloric Cooling: Structural Optimization with Isogeometric Analysis
Sprache: Englisch
Publikationsjahr: 13 Dezember 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ArXiv e-prints
Kollation: 13 Seiten
DOI: 10.48550/arXiv.2212.06580
URL / URN: https://arxiv.org/abs/2212.06580
Kurzbeschreibung (Abstract):

In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor-stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Computational Electromagnetics
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 16 Dez 2022 11:00
Letzte Änderung: 22 Dez 2022 10:58
PPN: 503152714
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen