TU Darmstadt / ULB / TUbiblio

Machine learning–enabled high-entropy alloy discovery

Rao, Ziyuan ; Tung, Po-Yen ; Xie, Ruiwen ; Wei, Ye ; Zhang, Hongbin ; Ferrari, Alberto ; Klaver, T. P. C. ; Körmann, Fritz ; Sukumar, Prithiv Thoudden ; Kwiatkowski da Silva, Alisson ; Chen, Yao ; Li, Zhiming ; Ponge, Dirk ; Neugebauer, Jörg ; Gutfleisch, Oliver ; Bauer, Stefan ; Raabe, Dierk (2022)
Machine learning–enabled high-entropy alloy discovery.
In: Science, 378 (6615)
doi: 10.1126/science.abo4940
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10−6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Rao, Ziyuan ; Tung, Po-Yen ; Xie, Ruiwen ; Wei, Ye ; Zhang, Hongbin ; Ferrari, Alberto ; Klaver, T. P. C. ; Körmann, Fritz ; Sukumar, Prithiv Thoudden ; Kwiatkowski da Silva, Alisson ; Chen, Yao ; Li, Zhiming ; Ponge, Dirk ; Neugebauer, Jörg ; Gutfleisch, Oliver ; Bauer, Stefan ; Raabe, Dierk
Art des Eintrags: Bibliographie
Titel: Machine learning–enabled high-entropy alloy discovery
Sprache: Englisch
Publikationsjahr: 6 Oktober 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Science
Jahrgang/Volume einer Zeitschrift: 378
(Heft-)Nummer: 6615
DOI: 10.1126/science.abo4940
Kurzbeschreibung (Abstract):

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10−6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 15 Mär 2023 06:07
Letzte Änderung: 15 Mär 2023 08:01
PPN: 505938154
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen