TU Darmstadt / ULB / TUbiblio

Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3

Salem, Mostafa Negm ; Ding, Kuan ; Rödel, Jürgen ; Fang, Xufei (2023)
Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3.
In: Journal of the American Ceramic Society, 106 (2)
doi: 10.1111/jace.18839
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Dislocation-tuned functionality in ceramic oxides for potential versatile applications gains increasing attention. As the widespread chemical doping suffers from poor temperature stability, dislocations in well-controlled mesoscopic structure may be an alternative to thermally stable intrinsic doping features. To this end, the dislocation density in plastic zones introduced by cyclic Brinell indentation is considered under thermal annealing conditions. The considerably enhanced dislocation density due to thermal treatment is found to impact both microhardness and fracture toughness, albeit only to amodest degree. Themechanistic understanding centers around enhanced mobility and multiplication of the pre-engineered dislocations at elevated temperatures driven by the residual indentation stress, as well as the strengthened interaction of point defects and dislocations at high temperature.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Salem, Mostafa Negm ; Ding, Kuan ; Rödel, Jürgen ; Fang, Xufei
Art des Eintrags: Bibliographie
Titel: Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3
Sprache: Englisch
Publikationsjahr: 2023
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 106
(Heft-)Nummer: 2
DOI: 10.1111/jace.18839
Zugehörige Links:
Kurzbeschreibung (Abstract):

Dislocation-tuned functionality in ceramic oxides for potential versatile applications gains increasing attention. As the widespread chemical doping suffers from poor temperature stability, dislocations in well-controlled mesoscopic structure may be an alternative to thermally stable intrinsic doping features. To this end, the dislocation density in plastic zones introduced by cyclic Brinell indentation is considered under thermal annealing conditions. The considerably enhanced dislocation density due to thermal treatment is found to impact both microhardness and fracture toughness, albeit only to amodest degree. Themechanistic understanding centers around enhanced mobility and multiplication of the pre-engineered dislocations at elevated temperatures driven by the residual indentation stress, as well as the strengthened interaction of point defects and dislocations at high temperature.

Freie Schlagworte: dislocation, fracture toughness, hardness, strontium titanate, thermal treatment
Zusätzliche Informationen:

First published online: 06 October 2022

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 12 Dez 2022 06:43
Letzte Änderung: 29 Nov 2023 10:32
PPN: 502502746
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen