Bigalke, Moritz ; Weyer, Stefan ; Wilcke, Wolfgang (2011)
Stable Cu isotope fractionation in soils during oxic weathering and podzolization.
In: Geochimica et Cosmochimica Acta, 75 (11)
doi: 10.1016/j.gca.2011.03.005
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Copper stable isotope ratios are fractionated during various biogeochemical processes and may trace the fate of Cu during long-term pedogenetic processes. We assessed the effects of oxic weathering (formation of Cambisols) and podzolization on Cu isotope ratios (δ65Cu). Two Cambisols (oxic weathered soils without strong vertical translocations of soil constituents) and two Podzols (soils showing vertical translocation of organic matter, Fe and Al) were analyzed for Cu concentrations, partitioning of Cu in seven fractions of a sequential extraction and δ65Cu values in bulk soil. Cu concentrations in the studied soils were low (1.4–27.6 μg g−1) and Cu was mainly associated with strongly bound Fe oxide- and silicate-associated forms. Bulk δ65Cu values varied between −0.57‰ and 0.44‰ in all studied horizons. The O horizons had on average significantly lighter Cu isotope compositions (−0.21‰) than the A horizons (0.13‰) which can either be explained by Cu isotope fractionation during cycling through the plants or deposition of isotopically light Cu from the atmosphere. Oxic weathering without pronounced podzolization in both Cambisols and a weakly developed Podzol (Haplic Podzol 2) caused no significant isotope fractionation in the single profiles, while a slight tendency to lower δ65Cu values with depth was visible in all four profiles. This is the opposite depth distribution of δ65Cu values to that we observed in hydromorphic soils (soils which show indication of redox changes because of the influence of water saturation) in a previous study. In a more pronounced Podzol (Haplic Podzol 1), δ65Cu values and Cu concentrations decreased from Ah to E horizons and increased again deeper in the soil. Humus-rich sections of the Bhs horizon had higher Cu concentrations (2.8 μg g−1) and a higher δ65Cu value (−0.18‰) than oxide-rich sections (1.9 μg g−1, −0.35‰) suggesting Cu translocation between E and B horizons as organo-Cu complexes. The different depth distributions in oxic weathered and hydromorphic soils and the pronounced vertical differences in δ65Cu values in Haplic Podzol 1 indicate a promising potential of δ65Cu values to improve our knowledge of the fate of Cu during long-term pedogenetic processes.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2011 |
Autor(en): | Bigalke, Moritz ; Weyer, Stefan ; Wilcke, Wolfgang |
Art des Eintrags: | Bibliographie |
Titel: | Stable Cu isotope fractionation in soils during oxic weathering and podzolization |
Sprache: | Englisch |
Publikationsjahr: | 2011 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Geochimica et Cosmochimica Acta |
Jahrgang/Volume einer Zeitschrift: | 75 |
(Heft-)Nummer: | 11 |
DOI: | 10.1016/j.gca.2011.03.005 |
Kurzbeschreibung (Abstract): | Copper stable isotope ratios are fractionated during various biogeochemical processes and may trace the fate of Cu during long-term pedogenetic processes. We assessed the effects of oxic weathering (formation of Cambisols) and podzolization on Cu isotope ratios (δ65Cu). Two Cambisols (oxic weathered soils without strong vertical translocations of soil constituents) and two Podzols (soils showing vertical translocation of organic matter, Fe and Al) were analyzed for Cu concentrations, partitioning of Cu in seven fractions of a sequential extraction and δ65Cu values in bulk soil. Cu concentrations in the studied soils were low (1.4–27.6 μg g−1) and Cu was mainly associated with strongly bound Fe oxide- and silicate-associated forms. Bulk δ65Cu values varied between −0.57‰ and 0.44‰ in all studied horizons. The O horizons had on average significantly lighter Cu isotope compositions (−0.21‰) than the A horizons (0.13‰) which can either be explained by Cu isotope fractionation during cycling through the plants or deposition of isotopically light Cu from the atmosphere. Oxic weathering without pronounced podzolization in both Cambisols and a weakly developed Podzol (Haplic Podzol 2) caused no significant isotope fractionation in the single profiles, while a slight tendency to lower δ65Cu values with depth was visible in all four profiles. This is the opposite depth distribution of δ65Cu values to that we observed in hydromorphic soils (soils which show indication of redox changes because of the influence of water saturation) in a previous study. In a more pronounced Podzol (Haplic Podzol 1), δ65Cu values and Cu concentrations decreased from Ah to E horizons and increased again deeper in the soil. Humus-rich sections of the Bhs horizon had higher Cu concentrations (2.8 μg g−1) and a higher δ65Cu value (−0.18‰) than oxide-rich sections (1.9 μg g−1, −0.35‰) suggesting Cu translocation between E and B horizons as organo-Cu complexes. The different depth distributions in oxic weathered and hydromorphic soils and the pronounced vertical differences in δ65Cu values in Haplic Podzol 1 indicate a promising potential of δ65Cu values to improve our knowledge of the fate of Cu during long-term pedogenetic processes. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Bodenmineralogie und Bodenchemie |
Hinterlegungsdatum: | 08 Dez 2022 11:39 |
Letzte Änderung: | 09 Dez 2022 10:11 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |