TU Darmstadt / ULB / TUbiblio

Isotopic variation of dissolved and colloidal iron and copper in a carbonatic floodplain soil after experimental flooding

Kusonwiriyawong, Charirat ; Bigalke, Moritz ; Abgottspon, Florian ; Lazarov, Marina ; Schuth, Stephan ; Weyer, Stefan ; Wilcke, Wolfgang (2017)
Isotopic variation of dissolved and colloidal iron and copper in a carbonatic floodplain soil after experimental flooding.
In: Chemical Geology, 459
doi: 10.1016/j.chemgeo.2017.03.033
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Many floodplain soils worldwide are contaminated by present and past industrial and mining activities. During flooding redox potential decreases, triggering the release of dissolved and colloidal metals. We used an anaerobic microcosm incubation to simulate flooding of a carbonate-rich floodplain soil for 40 days. Soil solution samples were extracted to determine the release of dissolved (< 0.02 μm) and colloidal fractions (0.02–10 μm). We analyzed stable isotope ratios of colloidal and dissolved Fe and Cu representing two groups of metals with different release behavior; release of Fe was steadily increasing, while that of Cu peaked sharply after flooding and decreased afterwards. The temporal trend of δ56Fe values of total Fe in solution indicated dissimilatory iron reduction. The apparent isotopic fractionation between dissolved and colloidal Fe (Δ56Fedissolved-colloidal = δ56Fedissolved − δ56Fecolloidal) varied from 0.31 ± 0.04‰ to − 1.86 ± 0.26‰. Low δ56Fecolloidal (− 1.16 ± 0.04‰) values on day 4 of the experiment suggested colloid formation by precipitation of dissolved Fe, while the strong temporal variation in Δ56Fedissolved-colloidal indicated subsequent changes in colloid mineralogy, sorption to soil components and/or electron transfer-atom exchange. The variations in δ65Cu values (Δ65Cudissolved-colloidal from 0.81 ± 0.03‰ to 1.58 ± 0.09‰) are probably linked to the changing oxidation state of colloidal Cu. While at the beginning of the experiment colloidal Cu and solid soil Cu exchange, these systems decouple after the onset of sulfate reduction in the second half of the experiment. The experimental results fit well to findings from redoximorphic soils described in the literature and highlight the importance of colloids for metal release and the isotopic pattern in carbonatic soils.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Kusonwiriyawong, Charirat ; Bigalke, Moritz ; Abgottspon, Florian ; Lazarov, Marina ; Schuth, Stephan ; Weyer, Stefan ; Wilcke, Wolfgang
Art des Eintrags: Bibliographie
Titel: Isotopic variation of dissolved and colloidal iron and copper in a carbonatic floodplain soil after experimental flooding
Sprache: Englisch
Publikationsjahr: 2017
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemical Geology
Jahrgang/Volume einer Zeitschrift: 459
DOI: 10.1016/j.chemgeo.2017.03.033
Kurzbeschreibung (Abstract):

Many floodplain soils worldwide are contaminated by present and past industrial and mining activities. During flooding redox potential decreases, triggering the release of dissolved and colloidal metals. We used an anaerobic microcosm incubation to simulate flooding of a carbonate-rich floodplain soil for 40 days. Soil solution samples were extracted to determine the release of dissolved (< 0.02 μm) and colloidal fractions (0.02–10 μm). We analyzed stable isotope ratios of colloidal and dissolved Fe and Cu representing two groups of metals with different release behavior; release of Fe was steadily increasing, while that of Cu peaked sharply after flooding and decreased afterwards. The temporal trend of δ56Fe values of total Fe in solution indicated dissimilatory iron reduction. The apparent isotopic fractionation between dissolved and colloidal Fe (Δ56Fedissolved-colloidal = δ56Fedissolved − δ56Fecolloidal) varied from 0.31 ± 0.04‰ to − 1.86 ± 0.26‰. Low δ56Fecolloidal (− 1.16 ± 0.04‰) values on day 4 of the experiment suggested colloid formation by precipitation of dissolved Fe, while the strong temporal variation in Δ56Fedissolved-colloidal indicated subsequent changes in colloid mineralogy, sorption to soil components and/or electron transfer-atom exchange. The variations in δ65Cu values (Δ65Cudissolved-colloidal from 0.81 ± 0.03‰ to 1.58 ± 0.09‰) are probably linked to the changing oxidation state of colloidal Cu. While at the beginning of the experiment colloidal Cu and solid soil Cu exchange, these systems decouple after the onset of sulfate reduction in the second half of the experiment. The experimental results fit well to findings from redoximorphic soils described in the literature and highlight the importance of colloids for metal release and the isotopic pattern in carbonatic soils.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Bodenmineralogie und Bodenchemie
Hinterlegungsdatum: 08 Dez 2022 11:39
Letzte Änderung: 08 Dez 2022 11:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen