Sachdeva, Rachneet ; Puerto San Roman, Haritz ; Baumgärtner, Tim ; Tariverdian, Sewin ; Zhang, Hao ; Wang, Kexin ; Saadi, Hossain Shaikh ; Ribeiro, Leonardo F. R. ; Gurevych, Iryna (2022)
UKP-SQuARE v2: Explainability and Adversarial Attacks for Trustworthy QA.
2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations. Taipei, Taiwan (20.11.2022-23.11.2022)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model’s prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on https://square.ukp-lab.de.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Sachdeva, Rachneet ; Puerto San Roman, Haritz ; Baumgärtner, Tim ; Tariverdian, Sewin ; Zhang, Hao ; Wang, Kexin ; Saadi, Hossain Shaikh ; Ribeiro, Leonardo F. R. ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | UKP-SQuARE v2: Explainability and Adversarial Attacks for Trustworthy QA |
Sprache: | Englisch |
Publikationsjahr: | 30 November 2022 |
Verlag: | ACL |
Buchtitel: | Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations |
Veranstaltungstitel: | 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations |
Veranstaltungsort: | Taipei, Taiwan |
Veranstaltungsdatum: | 20.11.2022-23.11.2022 |
URL / URN: | https://aclanthology.org/2022.aacl-demo.4 |
Kurzbeschreibung (Abstract): | Question Answering (QA) systems are increasingly deployed in applications where they support real-world decisions. However, state-of-the-art models rely on deep neural networks, which are difficult to interpret by humans. Inherently interpretable models or post hoc explainability methods can help users to comprehend how a model arrives at its prediction and, if successful, increase their trust in the system. Furthermore, researchers can leverage these insights to develop new methods that are more accurate and less biased. In this paper, we introduce SQuARE v2, the new version of SQuARE, to provide an explainability infrastructure for comparing models based on methods such as saliency maps and graph-based explanations. While saliency maps are useful to inspect the importance of each input token for the model’s prediction, graph-based explanations from external Knowledge Graphs enable the users to verify the reasoning behind the model prediction. In addition, we provide multiple adversarial attacks to compare the robustness of QA models. With these explainability methods and adversarial attacks, we aim to ease the research on trustworthy QA models. SQuARE is available on https://square.ukp-lab.de. |
Freie Schlagworte: | UKP_p_square, UKP_p_qa_sci_inf |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 30 Nov 2022 13:49 |
Letzte Änderung: | 06 Jul 2023 09:25 |
PPN: | 503807400 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |