Porz, Lukas ; Scherer, Michael ; Muhammad, Qaisar Khushi ; Higuchi, Kimitaka ; Li, Yan ; Koga, Shuhei ; Nakamura, Atsutomo ; Rheinheimer, Wolfgang ; Frömling, Till (2022)
Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃.
In: Journal of the American Ceramic Society, 2022, 105 (12)
doi: 10.26083/tuprints-00022897
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Porz, Lukas ; Scherer, Michael ; Muhammad, Qaisar Khushi ; Higuchi, Kimitaka ; Li, Yan ; Koga, Shuhei ; Nakamura, Atsutomo ; Rheinheimer, Wolfgang ; Frömling, Till |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃ |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Wiley |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of the American Ceramic Society |
Jahrgang/Volume einer Zeitschrift: | 105 |
(Heft-)Nummer: | 12 |
DOI: | 10.26083/tuprints-00022897 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/22897 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns. |
Freie Schlagworte: | blacklight sintering, conductivity, microstructure, sinter/sintering |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-228976 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe |
Hinterlegungsdatum: | 28 Nov 2022 14:08 |
Letzte Änderung: | 06 Dez 2023 09:52 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃. (deposited 28 Nov 2022 14:08) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |