TU Darmstadt / ULB / TUbiblio

Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃

Porz, Lukas ; Scherer, Michael ; Muhammad, Qaisar Khushi ; Higuchi, Kimitaka ; Li, Yan ; Koga, Shuhei ; Nakamura, Atsutomo ; Rheinheimer, Wolfgang ; Frömling, Till (2022)
Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃.
In: Journal of the American Ceramic Society, 2022, 105 (12)
doi: 10.26083/tuprints-00022897
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Porz, Lukas ; Scherer, Michael ; Muhammad, Qaisar Khushi ; Higuchi, Kimitaka ; Li, Yan ; Koga, Shuhei ; Nakamura, Atsutomo ; Rheinheimer, Wolfgang ; Frömling, Till
Art des Eintrags: Zweitveröffentlichung
Titel: Microstructure and conductivity of blacklight‐sintered TiO₂, YSZ, and Li₀.₃₃La₀.₅₇TiO₃
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 12
DOI: 10.26083/tuprints-00022897
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22897
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Rapid densification of ceramics has been realized and its merits were demonstrated through multiple approaches out of which UHS and flash sintering attract recent attention. So far, however, scalability remains difficult. A rise in throughput and scalability is enabled by the introduction of blacklight sintering powered by novel light source technology. Intense illumination with photon energy above the bandgap (blacklight) allows high absorption efficiency and, hence, very rapid, contactless heating for all ceramics. While heating the ceramic directly with light without any furnace promises scalability, it simultaneously offers highly accurate process control. For the technology transfer to industry, attainable material quality needs to be assured. Here, we demonstrate the excellent microstructure quality of blacklight‐sintered ceramics observed with ultrahigh voltage electron microscopy revealing an option to tune nanoporosity. Moreover, we confirm that electronic, electron, oxygen, and lithium‐ion conductivities are equal to conventionally sintered ceramics. This gives the prospect of transmitting the merits of rapid densification to the scale of industrial kilns.

Freie Schlagworte: blacklight sintering, conductivity, microstructure, sinter/sintering
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-228976
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 28 Nov 2022 14:08
Letzte Änderung: 06 Dez 2023 09:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen