TU Darmstadt / ULB / TUbiblio

Building a Library of Tactile Skills Based on FingerVision

Belousov, Boris ; Sadybakasov, Alymbek ; Wibranek, Bastian ; Veiga, Filipe ; Tessmann, Oliver (2022)
Building a Library of Tactile Skills Based on FingerVision.
19th International Conference on Humanoid Robots (Humanoids). Toronto, ON, Canada (15.10.2019-17.10.2019)
doi: 10.26083/tuprints-00020548
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Camera-based tactile sensors are emerging as a promising inexpensive solution for tactile-enhanced manipulation tasks. A recently introduced Finger Vision sensor was shown capable of generating reliable signals for force estimation, object pose estimation, and slip detection. In this paper, we build upon the Finger Vision design, improving already existing control algorithms, and, more importantly, expanding its range of applicability to more challenging tasks by utilizing raw skin deformation data for control. In contrast to previous approaches that rely on the average deformation of the whole sensor surface, we directly employ local deviations of each spherical marker immersed in the silicone body of the sensor for feedback control and as input to learning tasks. We show that with such input, substances of varying texture and viscosity can be distinguished on the basis of tactile sensations evoked while stirring them. As another application, we learn a mapping between skin deformation and force applied to an object. To demonstrate the full range of capabilities of the proposed controllers, we deploy them in a challenging architectural assembly task that involves inserting a load-bearing element underneath a bendable plate at the point of maximum load.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Belousov, Boris ; Sadybakasov, Alymbek ; Wibranek, Bastian ; Veiga, Filipe ; Tessmann, Oliver
Art des Eintrags: Zweitveröffentlichung
Titel: Building a Library of Tactile Skills Based on FingerVision
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IEEE
Buchtitel: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
Kollation: 6 Seiten
Veranstaltungstitel: 19th International Conference on Humanoid Robots (Humanoids)
Veranstaltungsort: Toronto, ON, Canada
Veranstaltungsdatum: 15.10.2019-17.10.2019
DOI: 10.26083/tuprints-00020548
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20548
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Camera-based tactile sensors are emerging as a promising inexpensive solution for tactile-enhanced manipulation tasks. A recently introduced Finger Vision sensor was shown capable of generating reliable signals for force estimation, object pose estimation, and slip detection. In this paper, we build upon the Finger Vision design, improving already existing control algorithms, and, more importantly, expanding its range of applicability to more challenging tasks by utilizing raw skin deformation data for control. In contrast to previous approaches that rely on the average deformation of the whole sensor surface, we directly employ local deviations of each spherical marker immersed in the silicone body of the sensor for feedback control and as input to learning tasks. We show that with such input, substances of varying texture and viscosity can be distinguished on the basis of tactile sensations evoked while stirring them. As another application, we learn a mapping between skin deformation and force applied to an object. To demonstrate the full range of capabilities of the proposed controllers, we deploy them in a challenging architectural assembly task that involves inserting a load-bearing element underneath a bendable plate at the point of maximum load.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-205484
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 15 Fachbereich Architektur
15 Fachbereich Architektur > Fachgruppe B: Gestalten und Darstellen
15 Fachbereich Architektur > Fachgruppe B: Gestalten und Darstellen > Digitales Gestalten
20 Fachbereich Informatik
20 Fachbereich Informatik > Intelligente Autonome Systeme
TU-Projekte: EC/H2020|640554|SKILLS4ROBOTS
Hinterlegungsdatum: 18 Nov 2022 14:07
Letzte Änderung: 21 Nov 2022 06:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen